Semantik und Programmverifikation

Prof. Dr. Christoph Walther / Simon Siegler
Technische Universität Darmstadt — Wintersemester 2008/09

Hausaufgabe mit Lösungsvorschlag 1

Hausaufgabe 1.1 (Folgerungsrelation) (1 + 1 + 1 = 3 Punkte)

Seien φ und ψ beliebige Formeln über Σ und \mathcal{V} . φ besitze die freie Variable $x \in \mathcal{V}_s$. Beweisen oder widerlegen Sie die folgenden Aussagen:

(a) $\{ \forall x : s \varphi \} \models \varphi$,

Lösungsvorschlag:

zu zeigen: $\{\forall x : s.\varphi\} \models \varphi$.

Sei $I = (\mathcal{A}, a)$ eine beliebige Σ -Interpretation mit $I \models \{ \forall x : s. \varphi \}$

$$I \models \forall x : s.\varphi \Rightarrow I[x/\bar{a}] \models \varphi \text{ für alle } \bar{a} \in \mathcal{A}_s.$$

Da $a(x) \in \mathcal{A}_s$ folgt insbesondere $I[x/a(x)] \models \varphi$. Mit I = I[x/a(x)] folgt $I \models \varphi$. Insgesamt also: $\{\forall x : s.\varphi\} \models \varphi$.

(b) $\{\varphi\} \models \forall x : s \varphi$,

Lösungsvorschlag:

Wir konstruieren ein Gegenmodell I und zeigen so, dass $\{\varphi\} \not\models \forall x : s \varphi$.

Wir wählen $S = \{s\}, \Sigma = \emptyset, A_s = \{\square, *\}, a(x) = *, a(y) = *, I = (A, a), \varphi = x \equiv y$. Dann gilt zwar a(x) = a(y) und somit $I \models x \equiv y$. Aber $I \not\models \forall x : s.x \equiv y$, denn $I[x/\square] \not\models x \equiv y$. Die Behauptung ist also falsch.

(c) $\{\varphi\} \models \psi \text{ gdw. } \emptyset \models \varphi \rightarrow \psi \text{ (Deduktionstheorem)}$

Lösungsvorschlag:

```
\emptyset \models \varphi \rightarrow \psi \Leftrightarrow \text{ für jede Interpretation } I \text{ gilt: } I \models \varphi \rightarrow \psi \Leftrightarrow \text{ für jede Interpretation } I \text{ gilt: } I \models \neg \varphi \lor \psi \Leftrightarrow \text{ für jede Interpretation } I \text{ gilt: } I \models \neg (\varphi \land \neg \psi) \Leftrightarrow \text{ für jede Interpretation } I \text{ gilt: } I \not\models \varphi \land \neg \psi \Leftrightarrow \text{ es keine Interpretation } I \text{ gibt, so dass } I \models \varphi \land \neg \psi \Leftrightarrow \text{ es keine Interpretation } I \text{ gibt, so dass } I \models \varphi \text{ und } I \models \neg \psi \Leftrightarrow \text{ für jede Interpretation } I \text{ mit } I \models \varphi \text{ gilt: } I \not\models \neg \psi \Leftrightarrow \text{ für jede Interpretation } I \text{ mit } I \models \varphi \text{ gilt: } I \models \neg \neg \psi) \Leftrightarrow \text{ für jede Interpretation } I \text{ mit } I \models \varphi \text{ gilt: } I \models \psi) \Leftrightarrow \{\varphi\} \models \psi
```

Hausaufgabe 1.2 (Theorien) (1 + 1 + 1 = 3 Punkte)

Zeigen Sie, daß für jede Σ -Algebra A gilt:

(a) $Th(A) \neq \emptyset$,

Lösungsvorschlag:

Für jede Σ -Algebra A gilt $A \models \text{TRUE} \Rightarrow \text{TRUE} \in \text{Th}(A) \Rightarrow \text{Th}(A) \neq \emptyset$.

(b) $\forall \varphi \in \text{Th}(A)$. $\neg \varphi \notin \text{Th}(A)$, d.h. Th(A) ist konsistent,

Lösungsvorschlag:

zu zeigen: für alle $\varphi \in \text{Th}(A)$: $\neg \varphi \notin \text{Th}(A)$. Sei $\varphi \in \text{Th}(A)$ beliebig. $\Rightarrow A \models \varphi \Rightarrow A \not\models \neg \varphi \Rightarrow \neg \varphi \notin \text{Th}(A)$

(c) $\forall \varphi \in \mathcal{F}_g(\Sigma, \mathcal{V}). \ \varphi \in \mathrm{Th}(A) \ \lor \ \neg \varphi \in \mathrm{Th}(A), \ \mathrm{d.h.} \ \mathrm{Th}(A) \ \mathrm{ist} \ vollständig.$

Lösungsvorschlag:

zu zeigen: für alle $\varphi \in \mathcal{F}_q(\Sigma, \mathcal{V})$: $\varphi \in \text{Th}(A)$ oder $\neg \varphi \in \text{Th}(A)$.

Seien A eine beliebige Σ -Algebra und $\varphi \in \mathcal{F}_g(\Sigma, \mathcal{V})$ eine beliebige geschlossene Formel.

Fall
$$A \models \varphi : \Rightarrow \varphi \in \operatorname{Th}(A) \Rightarrow \varphi \in \operatorname{Th}(A)$$
 oder $\neg \varphi \in \operatorname{Th}(A)$.
Fall $A \not\models \varphi : \Rightarrow A \models \neg \varphi \Rightarrow \neg \varphi \in \operatorname{Th}(A) \Rightarrow \varphi \in \operatorname{Th}(A)$ oder $\neg \varphi \in \operatorname{Th}(A)$.

Hausaufgabe 1.3 (Termerzeugte Algebren, Substitutionslemma) (3 + 1 = 4) Punkte

Eine Algebra $A = (\mathcal{A}, \alpha)$ heisst termerzeugt, falls es für jedes $\mathbf{a} \in \mathcal{A}$ einen Grundterm $t \in \mathcal{T}(\Sigma)$ gibt, so dass $A(t) = \mathbf{a}$ gilt.

(a) Beweisen Sie, daß für beliebige Σ -Interpretationen (A, a), (B, b) die folgende Aussage gilt, falls A und B termerzeugt sind:

$$[\forall \psi \in \mathcal{A}t(\Sigma, \mathcal{V}). \ ((A, a) \models \psi \Leftrightarrow (B, b) \models \psi)] \\ \iff [\forall \varphi \in \mathcal{F}(\Sigma, \mathcal{V}). \ ((A, a) \models \varphi \Leftrightarrow (B, b) \models \varphi)]$$

Hinweis: Verwenden Sie das Substitutionslemma 1.2.1.(ii) für Formeln.

Lösungsvorschlag:

" \Longrightarrow " Wir ziehen die Quantifizierung über φ nach aussen, damit eine Induktion über φ möglich wird. Zu zeigen also:

$$\forall \varphi \in \mathcal{F}(\Sigma, \mathcal{V}) : \underbrace{(\forall \psi \in \operatorname{At}(\Sigma, \mathcal{V})(A, a) \models \psi \Leftrightarrow (B, b) \models \psi)}_{\operatorname{Hyp}} \Rightarrow ((A, a) \models \varphi \Leftrightarrow (B, b) \models \varphi)$$

Wir zeigen dies durch Induktion über φ , wobei wir als fundierte Relation *nicht* die Teilformelrelation, sondern $>_{|\cdot|}$ verwenden, das wie folgt definiert wird:

 $\varphi>_{|\cdot|}\psi:\Leftrightarrow |\varphi|>|\psi|$ mi

$$|\cdot|: \varphi \mapsto \begin{cases} 1 & \text{falls } \varphi = \text{TRUE}, \\ 1 & \text{falls } \varphi = t_1 \equiv t_2 \text{ mit } t_1, t_2 \in \mathcal{T}(\Sigma, \mathcal{V}), \\ 1 + |\varphi_1| & \text{falls } \varphi = \neg \varphi_1 \text{ mit } \varphi_1 \in \mathcal{F}(\Sigma, \mathcal{V}), \\ 1 + |\varphi_1| + |\varphi_2| & \text{falls } \varphi = \varphi_1 \land \varphi_2 \text{ mit } \varphi_1, \varphi_2 \in \mathcal{F}(\Sigma, \mathcal{V}), \\ 1 + |\varphi_1| & \text{falls } \varphi = \forall x : s.\varphi_1 \text{ mit } \varphi_1 \in \mathcal{F}(\Sigma, \mathcal{V}), s \in \mathcal{S}, x \in \mathcal{V} \end{cases}$$

 $|\cdot|$ zählt die Anzahl der Junktoren und Quantoren in einer Formel. $(\mathcal{F}(\Sigma, \mathcal{V}), |\cdot|)$ ist nach Satz 1.4.1.(ii) fundiert und wir können über dieser fundierten Menge induzieren. Man beachte, dass wir bei der rekursiven Definition von $|\cdot|$ stillschweigend die Fundiertheit von $>_{\mathcal{F}}$ verwenden, die man in Analogie zu Hausaufgabe 2.2.(b) separat zeigen müßte.

Strukturelle Induktion über die Teilformelrelation $>_{\mathcal{F}}$ würde im Quantor-Schrittfall Probleme bereiten, wie wir sehen werden.

Basisfall φ ist $>_{|\cdot|}$ minimal

 $\Rightarrow \varphi$ ist atomar. Mit der Annahme Hyp folgt direkt die Behauptung.

Schrittfall
$$(\forall \chi \in \mathcal{F}(\Sigma, \mathcal{V}).\varphi >_{|\cdot|} \chi \Rightarrow P(\chi)) \Rightarrow P(\varphi)$$
:

Fall $\varphi = \neg \varphi_1$ mit $\varphi_1 \in \mathcal{F}(\Sigma, \mathcal{V})$:

Da $|\varphi| = |\neg \varphi_1| = 1 + |\varphi_1| > |\varphi|$ ist die Induktionshypothese $P(\varphi_1)$ anwendbar, und mit Annahme Hyp folgt:

$$(A,a) \models \varphi_1 \Leftrightarrow (B,b) \models \varphi_1 (*).$$

Zu zeigen bleibt $(A, a) \models \neg \varphi_1 \Leftrightarrow (B, b) \models \neg \varphi_1$:

Fall $\varphi = \varphi_1 \wedge \varphi_2$ mit $\varphi_1, \varphi_2 \in \mathcal{F}(\Sigma, \mathcal{V})$:

Da $|\varphi|=1+|\varphi_1|+|\varphi_2|$ gilt: $|\varphi|>|\varphi_1|$ und $|\varphi|>|\varphi_2|$ und die Induktionshypothesen $P(\varphi_1)$ und $P(\varphi_2)$ sind anwendbar. Mit Annahme Hyp folgen:

$$(1.)(A,a) \models \varphi_1 \Leftrightarrow (B,b) \models \varphi_1$$
$$(2.)(A,a) \models \varphi_2 \Leftrightarrow (B,b) \models \varphi_2$$

Zu zeigen bleibt: $(A, a) \models \varphi_1 \land \varphi_2 \Leftrightarrow (B, b) \models \varphi_1 \land \varphi_2$:

$$(A,a) \models \varphi_1 \land \varphi_2 \qquad \text{Def 1.2.2.(iv)}$$

$$\Leftrightarrow (A,a) \models \varphi_1 \text{ und } (A,a) \models \varphi_2 \quad (1.)$$

$$\Leftrightarrow (B,b) \models \varphi_1 \text{ und } (A,a) \models \varphi_2 \quad (2.)$$

$$\Leftrightarrow (B,b) \models \varphi_1 \text{ und } (B,b) \models \varphi_2 \quad \text{Def 1.2.2.(iv)}$$

$$\Leftrightarrow (B,b) \models \varphi_1 \land \varphi_2$$

Fall $\varphi = \forall x : s.\varphi_1 \text{ mit } \varphi_1 \in \mathcal{F}(\Sigma, \mathcal{V})$:

Vorüberlegung: durch strukturelle Induktion über t zeigt man leicht, dass für alle $t \in \mathcal{T}(\Sigma, \mathcal{V})_s \ \forall x : s.\varphi_1 >_{|.|} \varphi_1[x/t]$. Die Induktionshypothese $P(\varphi_1[x/t])$ ist also anwendbar und mit Annahme Hyp folgt

$$\forall t \in \mathcal{T}(\Sigma, \mathcal{V})_s.(A, a) \models \varphi_1[x/t] \Leftrightarrow (B, b) \models \varphi_1[x/t] \quad (*).$$

Anmerkung: weil eben nicht für beliebige $t \in \mathcal{T}(\Sigma, \mathcal{V})_s \ \forall x : s.\varphi_1 >_{\mathcal{T}} \varphi_1[x/t]$ gilt, funktioniert eine strukturelle Induktion über die Teilformelrelation für den Gesamtbeweis nicht.

Zu zeigen bleibt $(A, a) \models \forall x : s.\varphi_1 \Leftrightarrow (B, b) \models \forall x : s.\varphi_1$:

```
(A, a) \models \forall x : s.\varphi_1 \text{ Def } 1.2.2.(v)
                                           (A, a[x/\bar{a}]) \models \varphi_1
              \forall \bar{a} \in \mathcal{A}_s.
                                                                                              A termerzeugt
\Leftrightarrow
       \forall t \in \mathcal{T}(\Sigma)_s. \quad (A, a[x/a(t)]) \models \varphi_1
                                                                                              Substitutionslemma 1.2.1.(i)
\Leftrightarrow \forall t \in \mathcal{T}(\Sigma)_s.
                                                     (A,a) \models \varphi_1[x/t]
\Leftrightarrow \forall t \in \mathcal{T}(\Sigma)_s.
                                                      (B,b) \models \varphi_1[x/t]
                                                                                              Substitutionslemma 1.2.1.(i)
\Leftrightarrow \forall t \in \mathcal{T}(\Sigma)_s.
                                    (B,b[x/b(t)]) \models \varphi_1
                                                                                               B termerzeugt
               \forall \bar{b} \in \mathcal{B}_{s}.
                                            (B, b[x/\bar{b}]) \models \varphi_1
                                                                                              Def 1.2.2.(v)
\Leftrightarrow
                                                     (B,b) \models \forall x : s.\varphi_1
\Leftrightarrow
```

(b) Gilt die Aussage von Teil (a) auch, falls A oder B nicht termerzeugt sind?

Lösungsvorschlag:

Zwar haben wir im Quantorfall die Voraussetzung der Termerzeugtheit von A und B verwendet, daraus allein folgt aber noch nicht, dass es nicht auch ohne gehen könnte.

Wir konstruieren ein Gegenbeispiel und zeigen, dass die Aussage nicht mehr gilt, wenn A oder B nicht termerzeugt ist. Sei $S = \{s\}$, $A = ((A_s)_{s \in S}, \alpha)$, $B = ((B_s)_{s \in S}, \beta)$, $\Sigma_{\lambda,s} = \{c\}$, $A_s = \{\Box\}$, $B_s = \{\Box, *\}$, $\alpha_c = \Box$, $\beta_c = \Box$ ($\Rightarrow B$ nicht termerzeugt, denn kein Term erzeugt *).

Neben TRUE sind in $\operatorname{At}(\Sigma, \mathcal{V})$ nur Formeln $y \equiv z$ mit $y, z \in \mathcal{V}_s$ enthalten.

Mit $a(x) = b(x) = \square$ für alle $x \in \mathcal{V}_s$ gilt zwar sowohl $(A, a) \models \psi$ als auch $(B, b) \models \psi$ für alle $\psi \in At(\Sigma, \mathcal{V})$, aber $(A, a) \models \forall x : s x \equiv y$ und $(B, b) \not\models \forall x : s x \equiv y$, denn $(B, b[x/*]) \not\models x \equiv y$.

Hausaufgabe 1.4 (fundierte Mengen) (1 + 3 + 1 = 5 Punkte)

Beweisen Sie die folgenden Behauptungen. Verwenden Sie dabei Satz 1.4.1 aus der Vorlesung. Sie können dazu $(\mathbb{N}, >_{\mathbb{N}})$ als fundiert voraussetzen.

(a) Seien $(M,>_M)$ und $(N,>_N)$ fundierte Mengen, seien $f:K\to M$ und $g:K\to N$ Abbildungen und sei $>_K\subset K\times K$ definiert durch:

$$k_1 >_K k_2$$
 gdw. $f(k_1) >_M f(k_2)$ oder $(f(k_1) = f(k_2) \text{ und } g(k_1) >_N g(k_2))$.

Dann ist $(K, >_K)$ eine fundierte Menge (vgl. Lemma 1.4.3.(i))

Lösungsvorschlag:

Voraussetzung: $(M, >_M)$, $(N, >_N)$ sind fundierte Mengen. Mit Satz 1.4.1.(iii) ist $(M \times N, >_{M \times N})$ mit $(m, n) >_{M \times N} (m', n')$ gdw $m >_M m'$ oder (m = m') und $n >_N n'$ ebenfalls fundierte Menge.

Zu zeigen: $(K, >_K)$ ist eine fundierte Menge.

Wir definieren die Abbildung $F: K \to M \times N, k \mapsto (f(k), g(k))$. Mit Satz 1.4.1.(ii) folgt dann, dass die Relation $k \sqsubset_K k'$ gdw $F(k) >_{M \times N} F(k')$ ebenfalls fundiert ist. Man zeigt leicht $\sqsubset_K = >_K$. Also ist auch $>_K$ fundiert.

(b) $(\mathcal{T}(\Sigma, \mathcal{V}), >_{\mathcal{T}})$ ist eine fundierte Menge (vgl. Beispiel 1.3.1.(ii)).

Hinweis: Verwenden Sie **nicht** die Fundiertheit von $>_{|\cdot|}$.

Lösungsvorschlag:

Vorbemerkung: Es ist zwar sehr verlockend, die Fundiertheit von $>_{\mathcal{T}}$ mit Satz 1.4.1.(i) aus der Fundiertheit von $>_{|\cdot|}$ abzuleiten. Da wir uns aber bei der rekursiven Definition der Funktion $|\cdot|$ (siehe Hausaufgabe 1.4.(c)) bereits auf die Fundiertheit von $>_{\mathcal{T}}$ abgestützt hatten, würde unser Beweis dadurch zirkulär. Wir müssen also die Fundiertheit von $>_{\mathcal{T}}$ ohne einen derartigen Rückgriff zeigen.

(1.) Wir geben eine mengentheoretische Definition von $(\mathcal{T}(\Sigma, \mathcal{V}))_s$ an:

$$\mathcal{T}(\Sigma, \mathcal{V}, 0)_{s} := \mathcal{V}_{s} \cup \Sigma_{\lambda, s}$$

$$\mathcal{T}(\Sigma, \mathcal{V}, n+1)_{s} := \{f(t_{1}, \dots, t_{m}) | f \in \Sigma_{s_{1} \dots s_{m}, s}, t_{i} \in \mathcal{T}(\Sigma, \mathcal{V}, j)_{s_{i}}, 1 \leq i \leq m, 0 \leq j \leq n\}$$

$$\mathcal{T}(\Sigma, \mathcal{V})_{s} := \bigcup_{n=1}^{\infty} \mathcal{T}(\Sigma, \mathcal{V}, n)_{s}$$

- (2.) Wir definieren die Funktion depth : T(Σ, V) → N, t → min{n | t ∈ T(Σ, V, n)}. Somit ist depth wohldefiniert, da (N, >) fundiert ist.
 Man beachte: eine rekursive Definition von depth über die Struktur von t würde wiederum die Fundiertheit von >_T voraussetzen, die wir ja erst beweisen wollen!
- (3.) Wir definieren die Relation $>_{\text{depth}} \subseteq \mathcal{T}(\Sigma, \mathcal{V}) \times \mathcal{T}(\Sigma, \mathcal{V})$ mit $t >_{\text{depth}} r \Leftrightarrow \text{depth}(t) >_{\mathbb{N}} \text{depth}(r)$. Wir definieren die direkte Teiltermrelation $>'_{\mathcal{T}} \subseteq \mathcal{T}(\Sigma, \mathcal{V}) \times \mathcal{T}(\Sigma, \mathcal{V})$ mit $t >'_{\mathcal{T}} r$ gdw $t = f(t_1, \ldots, t_n)$ und $r = t_i$ für $i \in \{1, \ldots, n\}$ mit $f \in \Sigma_{s_1 \ldots s_m, s}, t_i \in \mathcal{T}(\Sigma, \mathcal{V})_{s_i}$ und zeigen mit Satz 1.4.1.(i) ihre Fundiertheit, indem wir $>'_{\mathcal{T}} \subseteq >_{\text{depth}}$ beweisen: Seien $t, r \in \mathcal{T}(\Sigma, \mathcal{V})$ beliebig mit $t >'_{\mathcal{T}} r$. Dann ist $t = f(t_1, \ldots, t_k), r = t_i$ für ein $i \in \{1, \ldots, k\}$. Sei $t \in \mathcal{T}(\Sigma, \mathcal{V}, n)$ und $r \in \mathcal{T}(\Sigma, \mathcal{V}, m)$. Wegen (1.) muss m < n sein. Mit (2.) ist dann depth(r) < depth(t) und mit (3.) folgt dann $t >_{\text{depth}} r$. Damit ist gezeigt, dass $>'_{\mathcal{T}} \subseteq >_{\text{depth}}$
- (4.) Nach Definition von $>_{\mathcal{T}}$ gilt $>_{\mathcal{T}} = (>'_{\mathcal{T}})^+$. Da $>'_{\mathcal{T}}$ wie gesehen fundiert ist, folgt mit Lemma 1.3.1 die Fundiertheit von $>_{\mathcal{T}}$.

Anmerkung: Dieser Beweis führt die Fundiertheit von $>_{\mathcal{T}}$ auf die Fundiertheit von $>_{\mathbb{N}}$ zurück, die durch das fünfte Peano-Axiom garantiert wird.

(c) $(\mathcal{T}(\Sigma, \mathcal{V}), >_{||})$ ist eine fundierte Menge, wobei $t >_{||} q$ gdw. $|t| >_{\mathbb{N}} |q|$. Hierbei gibt |t| die Anzahl der Symbole in t an (vgl. Beispiel 1.3.1.(iii)).

Hinweis: Geben Sie zunächst eine Definition für $|\cdot|$ an.

Lösungsvorschlag:

$$|\cdot|:\mathcal{T}(\Sigma,\mathcal{V})\to\mathbb{N}, t\mapsto \begin{cases} 1 & \text{falls }t\in\mathcal{V},\\ 1+\sum_{i=1}^n|t_i| & \text{falls }f\in\Sigma_{s_1\dots s_n,s}, w\in S^*, s\in S, t_i\in\mathcal{T}(\Sigma,\mathcal{V}), 1\leq i\leq n \end{cases}$$
 Wegen der zuvor in Hausaufgabe 1.4.(b) nachgewiesenen Fundiertheit von $>_{\mathcal{T}}$ ist $|\cdot|$ wohldefiniert. ($\mathbb{N},>_{\mathbb{N}}$) ist nach den Peano-Axiomen fundiert. Damit ist auch ($\mathcal{T}(\Sigma,\mathcal{V}),>_{|\cdot|}$) nach Satz 1.4.1.(ii) eine fundierte Menge.