Semantik und Programmverifikation

Prof. Dr. Christoph Walther / Simon Siegler
Technische Universität Darmstadt — Wintersemester 2008/09

Hausaufgabe 4

Abgabe dieser Übung bis Mittwoch, 14. Januar, 16.30 Uhr im Sekretariat S202/A310.

Hausaufgabe 4.1 (Stetigkeit eines Funktionals) (1 + 2 = 3 Punkte)

Sei (E, \sqsubseteq_E) eine vollständige Halbordnung, in der jede \sqsubseteq_E -Kette endlich ist, und sei $\phi \in [E \to E]$.

- (a) Zeigen Sie, dass $\langle \phi_i \circ \phi_i \rangle_{i \in \mathbb{N}}$ eine $\sqsubseteq_{E \to E}$ -Kette in $[E \to E]$ ist, falls $\langle \phi_i \rangle_{i \in \mathbb{N}}$ eine $\sqsubseteq_{E \to E}$ -Kette in $[E \to E]$ ist. Hierbei bezeichnet \circ die Funktionskomposition, also $(\phi \circ \phi)(x) = \phi(\phi(x))$.
- (b) Zeigen Sie, dass das Funktional $\mathcal{SQ}: [E \to E] \to [E \to E]$ mit $\mathcal{SQ}[\![\phi]\!] = \phi \circ \phi$ für alle $\phi \in [E \to E]$ bezüglich der Relation $\sqsubseteq_{E \to E}$ stetig ist.

Hinweis: zeigen Sie $\mathcal{SQ}[\sup_i \langle \phi_i \rangle] = \sup_i \langle \mathcal{SQ}[\phi_i] \rangle$ durch den Beweis von

```
 \begin{array}{lll} 1. & \sup_i \langle \mathcal{S} \mathcal{Q} \llbracket \phi_i \rrbracket \rangle & \sqsubseteq_{E \to E} & \mathcal{S} \mathcal{Q} \llbracket \sup_i \langle \phi_i \rangle \rrbracket \\ 2. & \mathcal{S} \mathcal{Q} \llbracket \sup_i \langle \phi_i \rangle \rrbracket & \sqsubseteq_{E \to E} & \sup_i \langle \mathcal{S} \mathcal{Q} \llbracket \phi_i \rrbracket \rangle \\ \end{array}
```

Verwenden Sie für die zweite Beziehung Lemma 2.3.9. (vgl. Übung 2.3.8)

Hausaufgabe 4.2 (Kleinster Fixpunkt einer Iterationsfolge) (5 Punkte)

Sei $P = \langle F_1, F_2 \rangle$ ein funktionales Programm mit $F_1 =$

```
\begin{array}{ll} \mathbf{function}\ f_1(x:nat):nat\ \Leftarrow & \mathbf{if}\ x=0\\ & \mathbf{then}\ 0\\ & \mathbf{else}\ \mathbf{if}\ x=1\\ & \mathbf{then}\ 0\\ & \mathbf{else}\ 1+f_1(x-2)\\ & \mathbf{fi} \end{array}
```

und $F_2 =$

```
\begin{aligned} \textbf{function} \ f_2(x:nat):nat & \Leftarrow & \textbf{if} \ x=0 \\ & \textbf{then} \ f_2(0) \\ & \textbf{else} \ \textbf{if} \ x=1 \\ & \textbf{then} \ 0 \\ & \textbf{else} \ 1+f_2(f_1(x)) \\ & \textbf{fi} \\ & \textbf{fi}, \end{aligned}
```

wobei 1+x abkürzend für succ(x) und x-2 für pred(pred(x)) steht. Bestimmen Sie für das Funktional \mathcal{R}_P des Programmes P die Iterationsfolge $\langle (\phi_{1,i},\phi_{2,i})\rangle_{i\in\mathbb{N}}$ sowie den kleinsten Fixpunkt $(\phi_1,\phi_2)=fix_{\mathcal{R}_P}$ von \mathcal{R}_P (vgl. Übung 2.3.11.(ii)).

Hausaufgabe 4.3 (Aussagen in D_P) (4 Punkte)

```
Sei P = \langle  function double(x:nat): nat \Leftarrow if_{nat}(eq_{nat}(x,0),0,succ(succ(double(pred(x))))),

function half(x:nat): nat \Leftarrow if_{nat}(eq_{nat}(x,0),0,if_{nat}(eq_{nat}(x,succ(0)),0,succ(half(pred(pred(x)))))) \rangle.
```

Zeigen Sie die folgenden Aussagen:

```
(a) D<sub>P</sub> |= [∀n : nat.n ≡ half(double(n))],
(b) D<sub>P</sub> |≠ [∀n : nat.eq<sub>nat</sub>(n, half(double(n))) ≡ true],
(c) D<sub>P</sub> |≠ [∃n : nat.eq<sub>nat</sub>(n, half(double(n))) ≡ false].
```

Hinweis: Sie können die zum Beweis notwendigen Deutungen der Funktionssymbole half und double ohne Fixpunktiteration oder Lösung der Fixpunktgleichung direkt angeben (vgl. Übung 2.3.14).

Hausaufgabe 4.4 (Länge von eval_P und cbv-eval_P Auswertung) (2 Punkte)

Sei P ein beliebiges funktionales Programm. Beweisen oder widerlegen Sie folgende Aussagen:

```
(a) Für alle t \in \mathcal{T}(\Sigma(P)) gilt: |t|_P \ge ||t||_P.
```

```
(b) Für alle t \in \mathcal{T}(\Sigma(P)) gilt: ||t||_P \ge |t|_P.
```