Semantik und Programmverifikation

Prof. Dr. Christoph Walther / Simon Siegler Technische Universität Darmstadt — Wintersemester 2008/09

Hausaufgabe 1

Abgabe dieser Übung bis Mittwoch, 05. November, 16.30 Uhr im Sekretariat S202/A310.

Hausaufgabe 1.1 (Folgerungsrelation) (1 + 1 + 1 = 3 Punkte)

Seien φ und ψ beliebige Formeln über Σ und \mathcal{V} . φ besitze die freie Variable $x \in \mathcal{V}_s$. Beweisen oder widerlegen Sie die folgenden Aussagen:

- (a) $\{ \forall x : s \varphi \} \models \varphi$,
- (b) $\{\varphi\} \models \forall x : s \varphi$,
- (c) $\{\varphi\} \models \psi \text{ gdw. } \emptyset \models \varphi \rightarrow \psi \text{ (Deduktionstheorem)}$

Hausaufgabe 1.2 (Theorien) (1 + 1 + 1 = 3 Punkte)

Zeigen Sie, daß für jede $\Sigma\text{-Algebra }A$ gilt:

- (a) $Th(A) \neq \emptyset$,
- (b) $\forall \varphi \in \text{Th}(A)$. $\neg \varphi \notin \text{Th}(A)$, d.h. Th(A) ist konsistent,
- (c) $\forall \varphi \in \mathcal{F}_q(\Sigma, \mathcal{V}). \ \varphi \in \mathrm{Th}(A) \lor \neg \varphi \in \mathrm{Th}(A), \ \mathrm{d.h.} \ \mathrm{Th}(A) \ \mathrm{ist} \ vollst \ddot{a}ndig.$

Hausaufgabe 1.3 (Termerzeugte Algebren, Substitutionslemma) (3 + 1 = 4) Punkte

Eine Algebra $A = (\mathcal{A}, \alpha)$ heisst termerzeugt, falls es für jedes $\mathbf{a} \in \mathcal{A}$ einen Grundterm $t \in \mathcal{T}(\Sigma)$ gibt, so dass $A(t) = \mathbf{a}$ gilt.

(a) Beweisen Sie, daß für beliebige Σ -Interpretationen (A, a), (B, b) die folgende Aussage gilt, falls A und B termerzeugt sind:

$$[\forall \psi \in \mathcal{A}t(\Sigma, \mathcal{V}). \ ((A, a) \models \psi \Leftrightarrow (B, b) \models \psi)] \\ \Longleftrightarrow [\forall \varphi \in \mathcal{F}(\Sigma, \mathcal{V}). \ ((A, a) \models \varphi \Leftrightarrow (B, b) \models \varphi)]$$

Hinweis: Verwenden Sie das Substitutionslemma 1.2.1.(ii) für Formeln.

(b) Gilt die Aussage von Teil (a) auch, falls A oder B nicht termerzeugt sind?

Hausaufgabe 1.4 (fundierte Mengen) (1 + 3 + 1 = 5 Punkte)

Beweisen Sie die folgenden Behauptungen. Verwenden Sie dabei Satz 1.4.1 aus der Vorlesung. Sie können dazu $(\mathbb{N}, >_{\mathbb{N}})$ als fundiert voraussetzen.

(a) Seien $(M,>_M)$ und $(N,>_N)$ fundierte Mengen, seien $f:K\to M$ und $g:K\to N$ Abbildungen und sei $>_K\subset K\times K$ definiert durch:

$$k_1 >_K k_2$$
 gdw. $f(k_1) >_M f(k_2)$ oder $(f(k_1) = f(k_2)$ und $g(k_1) >_N g(k_2))$.

Dann ist $(K, >_K)$ eine fundierte Menge (vgl. Lemma 1.4.3.(i))

- (b) $(\mathcal{T}(\Sigma, \mathcal{V}), >_{\mathcal{T}})$ ist eine fundierte Menge (vgl. Beispiel 1.3.1.(ii)). Hinweis: Verwenden Sie **nicht** die Fundiertheit von $>_{|\cdot|}$.
- (c) $(\mathcal{T}(\Sigma, \mathcal{V}), >_{||})$ ist eine fundierte Menge, wobei $t >_{||} q$ gdw. $|t| >_{\mathbb{N}} |q|$. Hierbei gibt |t| die Anzahl der Symbole in t an (vgl. Beispiel 1.3.1.(iii)).

Hinweis: Geben Sie zunächst eine Definition für $|\cdot|$ an.