Berechenbarkeitstheorie

Prof. Dr. Christoph Walther / Nathan Wasser
Technische Universität Darmstadt — Sommersemester 2011

Übung 2

Aufgabe 2.1 (Paar-Funktion)

- 1. Beweisen Sie die folgenden Eigenschaften der Paar-Funktion $\pi^2 : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ aus Definition 4.2 für alle $n_1, n_2 \in \mathbb{N}$:
 - a) $\pi^2(n_1+1,n_2) = \pi^2(n_1,n_2+1) + 1$
 - b) $\pi^2(0, n_2 + 1) = \pi^2(n_2, 0) + 1$
 - c) $\pi^2(n_1, n_2) \ge n_1$
 - d) $\pi^2(n_1, n_2) \ge n_2$

Veranschaulichen Sie sich die Bedeutung von (1.) und (2.) auch "graphisch" anhand von Abb. 4.1.

2. Beweisen Sie Satz 4.3 aus dem Skript, d. h. zeigen Sie, dass die Paar-Funktion $\pi^2: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ mit $\pi^2(n_1, n_2) := \frac{1}{2}(n_1 + n_2)(n_1 + n_2 + 1) + n_1$ eine surjektive, \mathcal{P} -berechenbare Gödelisierung von $\mathbb{N} \times \mathbb{N}$ ist.

Hinweis: Um die Injektivität von π^2 zu zeigen, können Sie folgendermaßen vorgehen: Definieren Sie eine fundierte, asymmetrische, transitive und totale Ordnungsrelation $\prec \subseteq \mathbb{N}^2 \times \mathbb{N}^2$ durch

$$(n_1, n_2) \prec (n'_1, n'_2) \iff d(n_1, n_2) < d(n'_1, n'_2) \lor (d(n_1, n_2) = d(n'_1, n'_2) \land n_1 < n'_1),$$

wobei $d: \mathbb{N}^2 \to \mathbb{N}$ durch $d(n_1, n_2) := n_1 + n_2$ definiert ist. d bestimmt die Nummer der Nebendiagonalen des Paars (n_1, n_2) . Verdeutlichen Sie sich die Ordnungsrelation anhand Abb. 4.1 im Skript.

Führen Sie einen Widerspruchsbeweis und nehmen an, es gäbe ein \prec -minimales Paar (n_1, n_2) mit folgender Eigenschaft:

(†) es gibt ein Paar
$$(n_1',n_2') \in \mathbb{N}^2$$
 mit $(n_1',n_2') \neq (n_1,n_2)$ und $\pi^2(n_1',n_2') = \pi^2(n_1,n_2)$

Wir zeigen mit 1, dass es dann ein gemäß \prec kleineres Paar $(n_1'', n_2'') \in \mathbb{N}^2$ gibt, das (†) erfüllt und erhalten damit den gewünschten Widerspruch.

Aufgabe 2.2 (Stelligkeit von Funktionen)

Geben Sie $\mathcal{P}[1]$ -Programme zur Berechnung von Addition und Multiplikation an, also Programme PLUS' und TIMES' mit

$$\forall x,y \in \mathbb{N}. \ \big[\!\!\big[\mathtt{PLUS'} \big]\!\!\big] \big(\pi^2(x,y)\big) = x + y \ \mathrm{und} \ \forall x,y \in \mathbb{N}. \ \big[\!\!\big[\mathtt{TIMES'} \big]\!\!\big] \big(\pi^2(x,y)\big) = x \cdot y.$$

Sie können dabei die Hilfsprozeduren PAIR², PAIR² und PAIR² aus Satz 4.3 und Satz 4.4 ohne Angabe ihrer Definitionen verwenden.

Aufgabe 2.3 (Abzählbarkeit)

Eine Menge M heißt $abz\ddot{a}hlbar$ unendlich, wenn es eine Bijektion zwischen M und \mathbb{N} gibt. Eine Menge heißt $abz\ddot{a}hlbar$ oder $h\ddot{o}chstens$ $abz\ddot{a}hlbar$, wenn sie endlich oder abzählbar unendlich ist. (Eine nicht abzählbare Menge nennt man auch $\ddot{u}berabz\ddot{a}hlbar$.)

Alternativ kann man also Abzählbarkeit wie folgt charakterisieren: Eine Menge M ist genau dann abzählbar, wenn es eine surjektive Funktion von \mathbb{N} nach M gibt.

Beweisen Sie die folgenden Aussagen:

- 1. Die Vereinigung von zwei abzählbaren Mengen ist ebenfalls abzählbar.
- 2. Die Vereinigung von zwei überabzählbaren Mengen ist überabzählbar.
- 3. Die Menge aller partiellen Funktionen von $\mathbb N$ nach $\mathbb N$ mit endlichen Definitionsbereichen ist abzählbar unendlich.
- 4. Die Menge aller Funktionen von N nach N mit endlichen Bildbereichen ist überabzählbar.