Berechenbarkeitstheorie

Prof. Dr. Christoph Walther / Nathan Wasser
Technische Universität Darmstadt — Sommersemester 2011

Lösungsvorschlag zu Übung 5

Lösungsvorschlag

Aufgabe 5.1 Entscheidbarkeit

Zeigen Sie mit dem Satz von Rice, dass die folgenden Probleme nicht entscheidbar sind.

1. $M_1 := \{ n \in \mathbb{N} \mid \varphi_n = \omega \}$

Lösungsvorschlag

Es gilt $\forall n, m \in \mathbb{N}$. $\varphi_m = \varphi_n \Rightarrow (n \in M_1 \Rightarrow m \in M_1)$, also $M_1 = \natural \Phi_1$ für $\Phi_1 = \{\omega\}$. Damit ist offenbar $\Phi_1 \neq \emptyset$ und auch $\Phi_1 \neq \llbracket \mathcal{P} \rrbracket$. Nach dem Satz von Rice ist damit $M_1 = \natural \Phi_1$ nicht entscheidbar.

2. $M_2 := \{ n \in \mathbb{N} \mid \varphi_n \text{ ist monoton} \}$

Lösungsvorschlag

Es gilt $\forall n, m \in \mathbb{N}$. $\varphi_m = \varphi_n \Rightarrow (n \in M_2 \Rightarrow m \in M_2)$, also $M_2 = \natural \Phi_2$ für $\Phi_2 = \{f \in [\![\mathcal{P}]\!] \mid f \text{ ist monoton}\}$. Damit ist offenbar $\Phi_2 \neq \emptyset$, denn $z \in \Phi_2$ für $z : \mathbb{N} \to \mathbb{N}$ mit $\forall n \in \mathbb{N}$. z(n) = 0. Auch gilt $\Phi_2 \neq [\![\mathcal{P}]\!]$, denn $\omega \notin \Phi_2$. Nach dem Satz von Rice ist damit $M_2 = \natural \Phi_2$ nicht entscheidbar.

3. $M_3 := \{ n \in \mathbb{N} \mid \varphi_n(0) = 0 \}$

Lösungsvorschlag

Es gilt $\forall n, m \in \mathbb{N}$. $\varphi_m = \varphi_n \Rightarrow (n \in M_3 \Rightarrow m \in M_3)$, also $M_3 = \sharp \Phi_3$ für $\Phi_3 = \{f \in \llbracket \mathcal{P} \rrbracket \mid f(0) = 0\}$. Damit ist offenbar $\Phi_3 \neq \emptyset$, denn $z \in \Phi$. Auch gilt $\Phi_3 \neq \llbracket \mathcal{P} \rrbracket$, denn $\omega \notin \Phi$. Nach dem Satz von Rice ist damit $M_3 = \sharp \Phi_3$ nicht entscheidbar.

Aufgabe 5.2 (Semi-Entscheidbarkeit)

1. Zeigen Sie, dass das Problem $M:=\left\{\pi^3(i,j,k)\in\mathbb{N}\,\middle|\,\varphi_i=\varphi_j\vee\varphi_i=\varphi_k\right\}$ nicht semi-entscheidbar ist, indem Sie ID auf M reduzieren.

Lösungsvorschlag

Bekanntlich ist die Identitätsfunktion id berechenbar, also gibt es ein $n \in \mathbb{N}$ mit $\varphi_n = id$. Die Funktion $\varrho : \mathbb{N} \to \mathbb{N}$ mit $\varrho(x) = \pi^3(x, n, n)$ ist offenbar auch total und berechenbar. Es gilt:

$$x \in ID \iff \varphi_x = id$$

$$\iff \varphi_x = \varphi_n$$

$$\iff \varphi_x = \varphi_n \lor \varphi_x = \varphi_n$$

$$\iff \varphi_{\pi_1^3(\varrho(x))} = \varphi_{\pi_2^3(\varrho(x))} \lor \varphi_{\pi_1^3(\varrho(x))} = \varphi_{\pi_3^3(\varrho(x))}$$

$$\iff \rho(x) \in M$$

Also gilt $ID \leq_{\varrho} M$. Da ID nicht semi-entscheidbar ist, kann damit auch M nicht semi-entscheidbar sein.

2. Aus der Vorlesung ist bekannt, dass das Totalitätsproblem $TOT = \{i \in \mathbb{N} \mid \forall x \in \mathbb{N}. \varphi_i(x) \neq \bot\}$ nicht semi-entscheidbar ist. Zeigen Sie nun, dass auch das Komplement des Totalitätsproblems $\overline{TOT} = \{i \in \mathbb{N} \mid \exists x \in \mathbb{N}. \varphi_i(x) = \bot\}$ nicht semi-entscheidbar ist. Reduzieren Sie dazu das Problem $\overline{S} = \{n \in \mathbb{N} \mid \varphi_n(n) = \bot\}$ auf \overline{TOT} .

Lösungsvorschlag

Für die Reduktion von \overline{S} auf \overline{TOT} brauchen wir eine totale und berechenbare Funktion $\varrho: \mathbb{N} \to \mathbb{N}$ mit $\varrho(n) \in \overline{TOT} \Longleftrightarrow n \in \overline{S}$. Also $\exists x. \ \varphi_{\varrho(n)}(x) = \bot \Longleftrightarrow \varphi_n(n) = \bot$.

Wir betrachten das folgende $\mathcal{P}[2]$ -Programm P.

```
procedure P(n, x) <=
begin var res;
  res := APPLY(PAIR<sup>2</sup>(n,n));
  return(res)
end
```

Offensichtlich gilt $\varphi_n(n) = \bot \Longrightarrow \forall x \in \mathbb{N}$. $[\![P]\!](n,x) = \bot \Longrightarrow \exists x \in \mathbb{N}$. $[\![P]\!](n,x) = \bot$. Umgekehrt gilt auch $\exists x \in \mathbb{N}$. $[\![P]\!](n,x) = \bot \Longrightarrow \varphi_n(n) = \bot$.

Nach dem s-m-n-Theorem gibt es dann eine totale und berechenbare Funktion $s_1^1: \mathbb{N}^2 \to \mathbb{N}$ mit $\varphi_{s_1^1(\natural \mathbb{P},n)}(x) = \varphi_{\natural \mathbb{P}}(n,x) = [\![\mathbb{P}]\!](n,x)$ für alle $n,x \in \mathbb{N}$. Sicherlich ist dann auch die Funktion $\varrho(n) := s_1^1(\natural \mathbb{P},n)$ berechenbar. Damit gilt:

$$n \in \overline{S} \iff \varphi_n(n) = \bot$$

$$\iff \exists x \in \mathbb{N}. \ \llbracket P \rrbracket(n, x) = \bot$$

$$\iff \exists x \in \mathbb{N}. \ \varphi_{\natural P}(n, x) = \bot$$

$$\iff \exists x \in \mathbb{N}. \ \varphi_{s_1^1(\natural P, n)}(x) = \bot$$

$$\iff \exists x \in \mathbb{N}. \ \varphi_{\varrho(n)}(x) = \bot$$

$$\iff \rho(n) \in \overline{TOT}$$

Damit haben wir \overline{S} erfolgreich auf \overline{TOT} reduziert, es gilt $\overline{S} \leq_{\varrho} \overline{TOT}$. Da \overline{S} nicht semientscheidbar ist, folgt damit, dass auch \overline{TOT} nicht semi-entscheidbar ist.