Formale Grundlagen der Informatik 3 –

11. Prädikatenlogik und Symbolische Auswertung

Christoph Walther TU Darmstadt

1 Sorten, Signaturen, Terme

Definition 1 (Sorten und Signaturen)

- (1) $S \neq \emptyset$ sei eine endliche Menge, genannt die Menge der **Sortensymbole**.
- (2) Für jedes $w \in \mathcal{S}^*$ und jedes $s \in \mathcal{S}$ sei Σ_{ws} eine endliche Menge von Funktionssymbolen mit $\Sigma_{ws} \cap \Sigma_{w's'} = \emptyset$ für $ws \neq w's'$.
- (3) $\Sigma := (\Sigma_{ws})_{ws \in S^*S}$ heißt dann eine S-Signatur.

Beispiel 1

- (1) $S := \{bool, nat, stack\}$ (2) $\Sigma_{bool} := \{true, false\}$
- (3) $\Sigma_{nat} := \{O\}$, $\Sigma_{stack} := \{empty\}$, $\Sigma_{nat,nat} := \{succ\}$ $\Sigma_{nat,stack,stack} := \{push\}$

Bedeutung:

- (1) bool, nat und stack sind Namen von Mengen.
- (2) Für die Sorte bool gibt es 2 Funktionen, die Konstanten true und false.
- (3) O ist Konstante der Sorte nat, succ ist Funktionssymbol mit $succ: nat \rightarrow nat$.
- (4) empty ist Konstante der Sorte stack, push ist Funktionssymbol mit $push : nat \times stack \rightarrow stack$.

Definition 2 (*Terme über* Σ *und* V)

- (1) Für $s \in \mathcal{S}$ ist \mathcal{V}_s unendliche Menge der **Variablensymbole** von s mit $\mathcal{V}_s \cap \mathcal{V}_{s'} = \emptyset$ für $s \neq s'$. Wir definieren $\mathcal{V} := (\mathcal{V}_s)_{s \in \mathcal{S}}$ und fordern $\mathcal{V} \cap \Sigma = \emptyset$.
- (2) $\mathcal{T}(\Sigma, \mathcal{V})_s \subset (\mathcal{V} \cup \Sigma)^*$ ist die Menge aller **Terme** der Sorte s über \mathcal{V} und Σ , definiert durch: Für jedes $t \in (\mathcal{V} \cup \Sigma)^*$ gilt $t \in \mathcal{T}(\Sigma, \mathcal{V})_s$ gdw.
 - (a) $t \in \mathcal{V}_s$ oder
 - (b) $t = ft_1 \dots t_n, f \in \Sigma_{s_1, \dots, s_n, s} \text{ und } t_1 \in \mathcal{T}(\Sigma, \mathcal{V})_{s_1}, \dots, t_n \in \mathcal{T}(\Sigma, \mathcal{V})_{s_n}$
- (3) $\mathcal{T}(\Sigma, \mathcal{V}) := (\mathcal{T}(\Sigma, \mathcal{V})_s)_{s \in S}$, die Menge aller Terme
- (4) $\mathcal{T}(\Sigma)_s := \mathcal{T}(\Sigma, \emptyset)_s$, die Menge der **Grund**terme der Sorte s
- (5) $\mathcal{T}(\Sigma) := (\mathcal{T}(\Sigma)_s)_{s \in \mathcal{S}}$.

Beispiel 2 Seien $n, m \in \mathcal{V}_{nat}$ und $k \in \mathcal{V}_{stack}$:

 $true, false \in \mathcal{T}(\Sigma, \mathcal{V})_{bool}, O \in \mathcal{T}(\Sigma, \mathcal{V})_{nat}, empty \in \mathcal{T}(\Sigma, \mathcal{V})_{stack}$ $succ(succ(O)) \in \mathcal{T}(\Sigma, \mathcal{V})_{nat}$ $push(succ(succ(O)), push(O, push(succ(O), empty))) \in \mathcal{T}(\Sigma, \mathcal{V})_{stack}$ $n, m \in \mathcal{T}(\Sigma, \mathcal{V})_{nat}, k \in \mathcal{T}(\Sigma, \mathcal{V})_{stack}$ $push(n, push(O, push(succ(m), k))) \in \mathcal{T}(\Sigma, \mathcal{V})_{stack}.$

Stimmt eigentlich nicht: Es muß z.B.

"push succ succ O push O push succ O empty $\in \mathcal{T}(\Sigma, \mathcal{V})_{stack}$ "

heißen.

Also: In Beispielen verwenden wir Klammern und Kommata!

Definition 3 (Sensible Signaturen)

Eine S-Signatur Σ ist **sensibel** gdw. $\mathcal{T}(\Sigma)_s \neq \emptyset$ für alle $s \in \mathcal{S}$.

Beispiel 3

- (1) Die Signatur Σ aus Beispiel 1 ist sensibel.
- (2) Für $S = \{void\}$ ist die S-Signatur Σ mit $\Sigma_{void} = \emptyset$ und $\Sigma_{void,void} = \{f\}$ nicht sensibel.

Ab jetzt: Wir betrachten nur noch sensible S-Signaturen Σ !

- Es gilt $\mathcal{T}(\Sigma, \mathcal{V}) \subset (\mathcal{V} \cup \Sigma)^*$, d.h. $\mathcal{T}(\Sigma, \mathcal{V})$ ist eine bestimmte Menge von Worten, d.h. $\mathcal{T}(\Sigma, \mathcal{V})$ ist eine formale Sprache.
- Welche Bedeutung sollen die Worte aus $\mathcal{T}(\Sigma, \mathcal{V})$ haben, d.h. was soll mit Elementen aus $\mathcal{T}(\Sigma, \mathcal{V})$ beschrieben werden?

2 Σ -Algebren

Definition 4 (Σ -Algebra)

Sei S Menge von Sortensymbolen und sei Σ eine S-Signatur. Dann ist eine Σ -Algebra ein Paar $A = (A, \alpha)$ mit

- (1) $\mathcal{A} = (\mathcal{A}_s)_{s \in \mathcal{S}}$ (\mathcal{A} ist eine Familie von **Trägermengen** \mathcal{A}_s für jede Sorte $s \in \mathcal{S}$)
- (2) $A_s \neq \emptyset$ für jedes $s \in \mathcal{S}$ (keine Trägermenge ist leer)
- (3) $\alpha = (\alpha_f)_{f \in \Sigma}$ (α ist Familie von **Deutungsfunktionen** α_f für jedes $f \in \Sigma$)
- (4) $\alpha_f: \mathcal{A}_{s_1} \times \ldots \times \mathcal{A}_{s_n} \to \mathcal{A}_s \text{ für jedes } f \in \Sigma_{s_1,\ldots,s_n,s}$.

Bedeutung:

- Jedem Sortensymbol s wird eine nicht-leere Trägermenge A_s zugeordnet
- Jedem Funktions symbol f wird mittels der Deutungsfunktion α eine **totale** Funktion α_f auf diesen Trägermengen zugeordnet
- Die Deutungsfunktion respektiert die Signatur!

Beispiel 4

 $S := \{bool, nat\}, \Sigma_{bool} := \{true, false\}, \Sigma_{nat} := \{O\}, \Sigma_{nat, nat} := \{succ\}.$

- (1) $\mathcal{A}_{bool} = \{\top, \bot\}$
- (2) $A_{nat} = \mathbb{N}$
- (3) $\alpha_{true} := \top$
- (4) $\alpha_{false} := \bot$
- (5) $\alpha_O := 0$
- (6) $\alpha_{succ}(n) := n + 1$

Bedeutung:

true und false werden als verschiedene Konstanten gedeutet. Das Konstantensymbol O wird als 0 und das Funktionssymbol succ als Nachfolgerfunktion in den natürlichen Zahlen gedeutet.

Beispiel 5

$$S := \{bool, nat\}, \Sigma_{bool} := \{true, false\}, \Sigma_{nat} := \{O\}, \Sigma_{nat, nat} := \{succ\}.$$

- (1) $\mathcal{A}_{bool} = \mathbb{N}$
- (2) $A_{nat} = \mathbb{R}$
- (3) $\alpha_{true} := 7$
- (4) $\alpha_{false} := 7$
- (5) $\alpha_O := \sqrt[3]{2}$
- (6) $\alpha_{succ}(n) := 1/(n^2+1)$

Ist das denn sinnvoll???

Unwichtig – "sinnvoll" ist nirgends gefordert!

 (A, α) ist eine Σ -Algebra, nur das ist hier gefragt.

Beispiel 6

 $S := \{bool, nat\}, \Sigma_{bool} := \{true, false\}, \Sigma_{nat} := \{O\}, \Sigma_{nat, nat} := \{succ\}.$

- (1) $\mathcal{A}_{bool} = \{\top, \bot\}$
- (2) $A_{nat} = \mathbb{N}$
- (3) $\alpha_{true} := \top$
- (4) $\alpha_{false} := \bot$
- (5) $\alpha_O := \bot$
- (6) $\alpha_{succ}(n) := \top$

 (\mathcal{A}, α) ist *keine* Σ -Algebra!

Es gilt $O \in \Sigma_{nat}$ sowie $succ \in \Sigma_{nat,nat}$ und damit ist

$$\alpha_O : \to \{\top, \bot\} \text{ und } \alpha_{succ} : \mathbb{N} \to \{\top, \bot\}$$

verboten (Signatur wird nicht respektiert!)

3 Deutung von Termen durch Σ -Algebren

Mit Σ -Algebren werden Grundterme gedeutet, d.h. die Worte aus $\mathcal{T}(\Sigma)$ bekommen eine *Bedeutung*:

Definition 5 (Deutung von Grundtermen)

Sei S Menge von Sortensymbolen, Σ eine S-Signatur, $A = (A, \alpha)$ eine Σ -Algebra. Dann ist für jedes $t \in \mathcal{T}(\Sigma)_s$ die **Deutung** $A(t) \in \mathcal{A}_s$ definiert durch:

- (1) $A(t) := \alpha_f$, falls $t = f \in \Sigma_s$ für eine Sorte $s \in \mathcal{S}$
- (2) $A(t) := \alpha_f(A(t_1), \dots, A(t_n))$, falls $t = ft_1 \dots t_n$ und $f \in \Sigma_{s_1, \dots, s_n, s}$ für gewisse Sorten $s_1, \dots, s_n, s \in \mathcal{S}$.

Bedeutung:

- Jedes Konstantensymbol f wird durch ein Element α_f der Trägermenge gedeutet
- Für jeden (nicht-Konstanten) Term $ft_1 \dots t_n$ werden (rekursiv) zunächst die Deutungen $A(t_1), \dots, A(t_n)$ der Argumente t_1, \dots, t_n bestimmt. Man erhält eine Folge von Elementen a_1, \dots, a_n der Trägermenge(n). Auf diese Elemente wird dann die dem Funktionssymbol f mittels der Deutungsfunktion zugeordnete Funktion α_f angewendet, also $A(ft_1 \dots t_n) := \alpha_f(a_1, \dots, a_n)$.

Bemerkung 1 Das kennen wir eigentlich schon – z.B. Ausrechnen von 3 * 5 + 7:

- 3, *, 5, + und 7 sind *Symbole*. Bedeutung:
 - -3 := 3, 5 := 5, 7 := 7, d.h. diesen Konstanten*symbolen* werden konkrete natürlich Zahlen zugeordnet.
 - $-*:=Multiplikation\ in\ \mathbb{N},+:=Addition\ in\ \mathbb{N},$ d.h. diesen Funktionssymbolen werden konkrete Funktionen auf den natürlichen Zahlen zugeordnet.
- Wie wird die Bedeutung festgelegt?
 - Mündliche Überlieferung Schule: Das kleine Einmaleins
 - Durch Implementierung in einem Rechner (Taschenrechner, PC, ...)
 - Formal: Durch eine Σ -Algebra!

- Deutung von Termen durch Σ -Algebren, d.h. die Worte aus $\mathcal{T}(\Sigma, \mathcal{V})$ bekommen eine *Bedeutung*.
- Was machen wir mit den Variablensymbolen?

Definition 6 (A-Variablenbelegung)

Sei $A = (A, \alpha)$ eine Σ -Algebra (bzgl. Sortenmenge S). Dann heißt eine totale Abbildung

$$\mathfrak{a}:\mathcal{V}\to_{\mathcal{S}}\mathcal{A}$$

eine A-Variablenbelegung.

Für $y \in \mathcal{V}_s$ und $a \in \mathcal{A}_s$ ist $\mathfrak{a}[y/a] : \mathcal{V} \to_{\mathcal{S}} \mathcal{A}$ definiert durch: $\mathfrak{a}[y/a](x) := a$, falls x = y, und $\mathfrak{a}[y/a](x) := \mathfrak{a}(x)$ and ernfalls.

Jede A-Variablenbelegung $a: \mathcal{V} \to_{\mathcal{S}} \mathcal{A}$ wird zu einer Abbildung

$$\widehat{\mathfrak{a}}: \mathcal{T}(\Sigma, \mathcal{V}) \longrightarrow_{\mathcal{S}} \mathcal{A}$$

erweitert durch:

- (1) $\widehat{\mathfrak{a}}(t) := \mathfrak{a}(x)$, falls $t = x \in \mathcal{V}$
- (2) $\widehat{\mathfrak{a}}(t) := \alpha_f$, falls $t = f \in \Sigma_s$ für eine Sorte $s \in \mathcal{S}$
- (3) $\widehat{\mathfrak{a}}(t) := \alpha_f(\widehat{\mathfrak{a}}(t_1), \dots, \widehat{\mathfrak{a}}(t_n))$, falls $t = ft_1 \dots t_n$ und $f \in \Sigma_{s_1, \dots, s_n, s}$ für gewisse Sorten $s_1, \dots, s_n, s \in \mathcal{S}$.

Bemerkung 2

- Es gilt $\widehat{\mathfrak{a}}(t) = A(t)$ für jeden Grundterm $t \in \mathcal{T}(\Sigma)$.
- Mit $\widehat{\mathfrak{a}}$ werden Terme $t \in \mathcal{T}(\Sigma, \mathcal{V})$ genauso gedeutet wie durch die Σ -Algebra A. Falls jedoch Variablensymbole x in t vorkommen, so werden diese mittels der Variablenbelegung \mathfrak{a} gedeutet, also als $\mathfrak{a}(x)$.
- Ab jetzt: Keine Unterscheidung zwischen $\widehat{\mathfrak{a}}$ und \mathfrak{a} , d.h. wir schreiben immer \mathfrak{a} .
- Kleine Hilfe für die Übungen: Schreiben Sie \overline{a} anstatt \mathfrak{a} , falls Ihnen Frakturbuchstaben nicht so leicht von der Hand gehen.

Bemerkung 3 Das kennen wir auch schon – z.B. Ausrechnen von 3 * x + y:

- Eine A-Variablenbelegung modelliert den Speicher einer Rechners.
- Gelangt der Rechner bei Auswertung eines Ausdrucks (= Term) an eine Variable x, so wird aus dem Speicher die dort abgelegte Zuordnung (formal: $\mathfrak{a}(x)$) zur Berechnung verwendet.
- "Speicherbelegung" $\mathfrak{a}[y/a]$ entsteht aus "Speicherbelegung" \mathfrak{a} , indem der Inhalt der Variablen y mit a "überschrieben" wird.

4 Deutung von Formeln durch Σ-Algebren

Definition 7 (Formeln über V und Σ)

Gegeben S-Signatur Σ sowie V.

Die Menge $\mathcal{AT}(\Sigma, \mathcal{V}) \subset (\mathcal{V} \cup \Sigma \cup \{\equiv\})^*$ der atomaren Formeln über \mathcal{V} und Σ ist definiert durch:

(1) $t_1 \equiv t_2 \in \mathcal{AT}(\Sigma, \mathcal{V})$, falls $t_1, t_2 \in \mathcal{T}(\Sigma, \mathcal{V})_s$ für ein $s \in \mathcal{S}$.

Die Menge $\mathcal{F}(\Sigma, \mathcal{V}) \subset (\mathcal{V} \cup \Sigma \cup \{\equiv, \neg, \wedge, \forall\})^*$ der **Formeln** über \mathcal{V} und Σ ist definiert durch:

- (1) $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$, falls $\phi \in \mathcal{AT}(\Sigma, \mathcal{V})$
- (2) $\neg \phi \in \mathcal{F}(\Sigma, \mathcal{V})$, falls $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$
- (3) $\phi_1 \wedge \phi_2 \in \mathcal{F}(\Sigma, \mathcal{V})$, falls $\phi_1, \phi_2 \in \mathcal{F}(\Sigma, \mathcal{V})$
- (4) $\forall x : s \ \phi \in \mathcal{F}(\Sigma, \mathcal{V})$, falls $s \in \mathcal{S}$, $x \in \mathcal{V}_s$ und $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$.

Bemerkung 4

- Anstatt Prädikatensymbole P verwenden wir Funktionssymbole $p \in \Sigma_{w,bool}$ und schreiben $p(\ldots) \equiv true$ anstatt $P(\ldots)$.
- *Grund:* => **Kapitel 9** (Folien 6 und 7)

Schreibweisen

- In Beispielen Klammern und Kommata wie bei Termen.
- Kurz " $\forall x \phi$ " anstatt " $\forall x : s \phi$ ", wenn s beliebig ist.
- Wir verwenden in Beispielen auch die üblichen Junktoren \vee , \rightarrow , \leftrightarrow und den Existenzquantor \exists . Ausdrücke der erweiterten Sprache werden formal wie üblich als Abkürzung für Ausdrücke der Kernsprache aufgefaßt. Z.B. steht " $\forall x \ \phi \rightarrow \exists y \ \psi$ " für " $\neg(\forall x \ \phi \land \forall y \ \neg \psi)$ ".
- In Beispielen lassen wir " $\equiv true$ " weg, also z.B. " $even(x) \rightarrow \neg odd(x)$ " anstatt " $even(x) \equiv true \rightarrow \neg odd(x) \equiv true$ ".

Hinweis

- Im allgemeinen kann es in einer prädikatenlogischen Sprache neben einem Gleichheitsprädikatensymbol (hier: ≡) noch weitere Prädikatensymbole geben.
- Hier Sonderfall: Es gibt nur ein 2-stelliges Prädikatensymbol, nämlich ≡
 (=> Kapitel 9, Folien 6 und 7).

Was bedeuten Formeln?

- Deutung von Formeln durch Σ -Algebren, d.h. die Worte aus $\mathcal{F}(\Sigma, \mathcal{V})$ bekommen eine *Bedeutung*.
- Was bedeutet \equiv ?
- Wie deuten wir die Junktoren \neg und \wedge ?
- Wie deuten wir den Allquantor \forall ?

Definition 8 (Deutung von Formeln)

Sei $A = (\mathcal{A}, \alpha)$ eine Σ -Algebra (bzgl. Sortenmenge S) und $\mathfrak{a} : \mathcal{V} \to_{S} \mathcal{A}$ eine A-Variablenbelegung. Dann ist das Paar $I = (A, \mathfrak{a})$ eine Σ -Interpretation. Die Σ -Interpretation I erfüllt eine Formel $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$ (kurz: $I \models_{Alg(\Sigma)} \phi$) gdw.

- (1) $\phi = t_1 \equiv t_2 \text{ und } \mathfrak{a}(t_1) = \mathfrak{a}(t_2)$
- (2) $\phi = \neg \phi' \text{ und } I \not\models_{Alq(\Sigma)} \phi'$
- (3) $\phi = \phi_1 \wedge \phi_2$ und sowohl $I \models_{Alg(\Sigma)} \phi_1$ als auch $I \models_{Alg(\Sigma)} \phi_2$
- (4) $\phi = \forall x : s \ \phi' \ \text{und} \ I[x/a] \models_{Alg(\Sigma)} \phi' \ \text{für jedes} \ a \in \mathcal{A}_s$ (wobei $I[x/a] := (A, \mathfrak{a}[x/a])$).
- $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$ ist **erfüllbar** gdw. $I \models_{Alg(\Sigma)} \phi$ für **eine** Σ -Interpretation I.
- Eine Σ -Interpretation I erfüllt eine Formelmenge $\Phi \subset \mathcal{F}(\Sigma, \mathcal{V})$ (kurz: $I \models_{Alg(\Sigma)} \Phi$) gdw. $I \models_{Alg(\Sigma)} \phi$ für alle $\phi \in \Phi$.
- $\Phi \subset \mathcal{F}(\Sigma, \mathcal{V})$ ist **erfüllbar** gdw. $I \models_{Alg(\Sigma)} \Phi$ für eine Σ -Interpretation I.
- $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$ ist allgemeingültig gdw. $I \models_{Alg(\Sigma)} \phi$ für jede Σ -Interpretation I.

Bemerkung 5 Also:

- \equiv deuten wir als *Identität*.
- \neg und \land deuten wir (wie üblich) als "nicht" und "und".
- ∀ deuten wir (wie üblich) als "für alle".

Schreibweise: Für eine Σ -Algebra A steht A[x/a] für jede Σ -Interpretation $(A, \mathfrak{a}[x/a])$ mit beliebiger A-Variablenbelegung \mathfrak{a} .

Definition 9 (Semantische Folgerung)

- Eine Formel $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$ folgt aus einer Formelmenge $\Phi \subset \mathcal{F}(\Sigma, \mathcal{V})$ (kurz: $\Phi \models_{\mathcal{F}(\Sigma, \mathcal{V})} \phi$) gdw. $I \models_{Alg(\Sigma)} \phi$ für alle Σ -Interpretationen I mit $I \models_{Alg(\Sigma)} \Phi$. Wir schreiben $\models_{\mathcal{F}(\Sigma, \mathcal{V})} \phi$, falls $\Phi = \emptyset$.
- $\Phi^{\models_{\mathcal{F}(\Sigma,\mathcal{V})}}$, definiert als $\{\phi \in \mathcal{F}(\Sigma,\mathcal{V}) \mid \Phi \models_{\mathcal{F}(\Sigma,\mathcal{V})} \phi\}$, ist die Menge aller **Folgerungen** von $\Phi \subset \mathcal{F}(\Sigma,\mathcal{V})$.

Satz 10 $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$ ist allgemeingültig gdw. $\models_{\mathcal{F}(\Sigma, \mathcal{V})} \phi$, d.h. $\emptyset \models_{\mathcal{F}(\Sigma, \mathcal{V})}$ ist die Menge aller allgemeingültigen Formeln.

Satz 11
$$\models_{\mathcal{F}(\Sigma,\mathcal{V})}$$
 ist monoton, d.h. für alle $\Phi, \Psi \subset \mathcal{F}(\Sigma,\mathcal{V})$ gilt $\Phi \subset \Psi \Rightarrow \Phi^{\models_{\mathcal{F}(\Sigma,\mathcal{V})}} \subset \Psi^{\models_{\mathcal{F}(\Sigma,\mathcal{V})}}$

Konvention:

Im Folgenden kurz " \models " anstatt " $\models_{Alg(\Sigma)}$ " und " $\models_{\mathcal{F}(\Sigma,\mathcal{V})}$ ". D.h. "overloading" von " \models ". Aber aus dem Kontext ist immer ersichtlich, ob " $\models_{Alg(\Sigma)}$ " oder " $\models_{\mathcal{F}(\Sigma,\mathcal{V})}$ " gemeint ist.

Welche Formeln werden durch eine Σ -Algebra erfüllt ?

Definition 12 (Geschlossene Formeln, $\mathcal{F}_q(\Sigma, \mathcal{V})$)

Für $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$ sei $\mathcal{V}(\phi) \subset \mathcal{V}$ die Menge aller Variablensymbole in der Formel ϕ . $\mathcal{V}_f(\phi) \subset \mathcal{V}(\phi)$ ist die Menge aller **freien** Variablen von ϕ , definiert durch:

- (1) $\mathcal{V}_f(\phi) := \mathcal{V}(\phi)$, falls $\phi \in \mathcal{AT}(\Sigma, \mathcal{V})$
- (2) $\mathcal{V}_f(\neg \phi) := \mathcal{V}_f(\phi)$
- (3) $\mathcal{V}_f(\phi_1 \wedge \phi_2) := \mathcal{V}_f(\phi_1) \cup \mathcal{V}_f(\phi_2)$
- (4) $\mathcal{V}_f(\forall x : s \phi) := \mathcal{V}_f(\phi) \setminus \{x\}$

 $\phi \in \mathcal{F}(\Sigma, \mathcal{V})$ ist **geschlossen** (kurz: $\phi \in \mathcal{F}_q(\Sigma, \mathcal{V})$) gdw. $\mathcal{V}_f(\phi) = \emptyset$.

Definition 13 (Theorie einer Σ -Algebra)

- Eine Σ -Algebra $A = (\mathcal{A}, \alpha)$ erfüllt eine **geschlossene** Formel $\phi \in \mathcal{F}_g(\Sigma, \mathcal{V})$ (kurz: $A \models \phi$) gdw. $I \models \phi$ für **jede** Σ -Interpretation $I = (A, \mathfrak{a})$ gilt.
- Die **Theorie** Th(A) einer Σ -Algebra A ist definiert durch

$$Th(A) := \{ \phi \in \mathcal{F}_g(\Sigma, \mathcal{V}) \mid A \models \phi \} .$$

Bemerkung 6

- Solange wir nur geschlossene Formeln betrachten, spielt die Variablenbelegung einer Interpretation keine Rolle. Daher $A \models \phi$ anstatt $(A, \mathfrak{a}) \models \phi$.
- Die Theorie Th(A) einer Σ -Algebra A enthält alle wahren Aussagen über die Funktionen und Elemente (der Trägermengen) der Algebra, die wir mittels geschlossener Formeln aus $\mathcal{F}_q(\Sigma, \mathcal{V})$ aufschreiben können.
- Später: Σ -Algebra \mathcal{M}_P wird definiert durch die Funktionen, die durch die Prozeduren eines Programms P berechnet werden. Theorie $Th(\mathcal{M}_P)$ enthält dann alle wahren Aussagen über P. Verifikation einer Programmaussage ϕ bedeutet dann: Feststellen, ob $\phi \in Th(\mathcal{M}_P)$ gilt.

Satz 14 Seien $A, B \Sigma$ -Algebren und sei $\phi \in \mathcal{F}_g(\Sigma, \mathcal{V})$. Dann gilt:

- (1) $\emptyset^{\models} \subset Th(A)$, d.h. jede Theorie enthält alle allgemeingültigen Formeln,
- (2) $Th(A) \neq \emptyset$, d.h. keine Theorie ist leer,
- (3) $\phi \notin Th(A)$ oder $\neg \phi \notin Th(A)$, d.h. Th(A) ist konsistent (widerspruchsfrei),
- (4) $\phi \in Th(A)$ oder $\neg \phi \in Th(A)$, d.h. Th(A) ist vollständig,
- (5) $Th(A) \cup \{\phi\}$ ist erfüllbar gdw. $\phi \in Th(A)$,
- (6) Th(A) = Th(B) gdw. $Th(A) \subseteq Th(B)$.

Beispiel 7 Sei $S := \{bool, nat\}$, $\Sigma_{bool} := \{true, false\}$, $\Sigma_{nat} := \{O\}$, $\Sigma_{nat,nat}$:= $\{succ\}$, $\Sigma_{nat,nat,nat} := \{plus\}$, $\Sigma_{nat,nat,bool} := \{gt\}$ und $PLUS_{>} = (\mathcal{A}, \alpha)$ definiert durch

- (1) $A_{nat} = \mathbb{N}, A_{bool} = \{\top, \bot\},$
- (2) $\alpha_{true} := \top, \alpha_{false} := \bot, \alpha_O := 0, \alpha_{succ}(n) := n + 1,$
- (3) $\alpha_{plus}(n,m) := n + m,$

(4)
$$\alpha_{gt}(n,m) := \begin{cases} \top & \text{, falls } n > m \\ \bot & \text{, falls } n \leq m \end{cases}$$

Dann enthält Th(PLUS) alle wahren Aussagen über 0, Nachfolgerfunktion und Addition, die mittels Formeln aus $\mathcal{F}_g(\Sigma, \mathcal{V})$ ausgedrückt werden können. Z.B.

- $[\forall x : nat. \neg succ(x) \equiv O] \in Th(PLUS_>),$
- $[\forall x: nat. \ gt(succ(x), O) \equiv true] \in Th(PLUS_>),$
- $[\exists x : nat. \neg plus(x, x) \equiv x] \in Th(PLUS_>),$
- $[\forall x, y : nat. \ plus(x, y) \equiv plus(y, x)] \in Th(PLUS_>),$
- $[\forall x, y, z : nat. \ plus(x, plus(y, z)) \equiv plus(plus(x, y), z)] \in Th(PLUS_>),$
- $[\forall x, y, z : nat. \ plus(x, y) \equiv plus(x, z) \rightarrow y \equiv z] \in Th(PLUS_>),$

• . . .

Aber:

Beispielsweise kann

$$\left|Range_{gt}(n)
ight|<\infty$$
 für alle $n\in\mathbb{N}$

 $mit\ Range_{gt}(n) := \{m \in \mathbb{N} \mid \alpha_{gt}(n,m) = \top\}\ nicht\ mittels\ Formeln\ aus\ \mathcal{F}_g\left(\Sigma,\mathcal{V}\right)$ ausgedrückt werden !

Bezug zu und Erinnerung an FGdI 2:

- Signaturen werden in FGdI 2 durch S anstatt durch Σ bezeichnet.
- Eine S-Algebra über einer Signatur S für Funktionssymbole (und Prädikatssymbole bzw. Relationssymbole) wird in FGdI 2 als S-Struktur bezeichnet.
- In FGdI 2 wird f^A anstatt α_f für die Deutungsfunktion eines Funktionssymbols f geschrieben:
 - Schreibweise hier: $A(f(t_1, \ldots, t_n)) := \alpha_f(A(t_1), \ldots, A(t_n))$
 - Schreibweise FGdI 2: $(\mathbf{f}(\mathbf{t}_1,\ldots,\mathbf{t}_n))^A := \mathbf{f}^A(\mathbf{t}_1^A,\ldots,\mathbf{t}_n^A)$
- A-Variablenbelegungen $\mathfrak{a}:\mathcal{V}\to\mathcal{A}$ werden in FGdI 2 kurz Belegungen genannt und i.A. durch " β " bezeichnet:
 - Schreibweise hier: $I(\mathbf{x}) := \mathfrak{a}(\mathbf{x})$ und $I(\mathbf{f}(\mathbf{t}_1, \dots, \mathbf{t}_n)) := \alpha_{\mathbf{f}}(I(\mathbf{t}_1), \dots, I(\mathbf{t}_n))$
 - Schreibweise FGdI 2: $\mathbf{x}^I := \mathbf{\mathfrak{a}}(\mathbf{x})$ und $(\mathbf{f}(\mathbf{t}_1, \dots, \mathbf{t}_n))^I := \mathbf{f}^I(\mathbf{t}_1^I, \dots, \mathbf{t}_n^I)$

5 Eigenschaften der Symbolischen Auswertung

Satz 15 (Korrektheit der Symbolischen Auswertung) Seien

- AX_P die Menge aller Axiome der Datentyp- und Prozedurdefinitionen eines \mathcal{L} -Programms P,
- $Lem_{verified}$ die Menge aller bewiesenen Lemmata von P,
- $AX_{Lem_{verified}}$ die Menge der Axiome der Lemmata aus $Lem_{verified}$,
- $\mathcal{E}_P := \{ \forall x, y : \tau. \ eq_{\tau}(x, y) \equiv true \leftrightarrow x \equiv y | \text{Typ } \tau \neq bool \text{ ist in } P \text{ definiert} \}$ $\cup \{ \forall x : bool. \ x \equiv true \lor x \equiv false \},$
- $seq = \langle H, IH \Vdash b \rangle$ eine *HPL*-Sequenz in *P*, und
- b ein boolscher Term in P, so daß b' aus b durch Anwendung endlich vieler Schritte der symbolischen Auswertung entsteht (kurz: $b \vdash_{AX_P, Lem_{verified}, seq} b'$). Dann gilt

$$\begin{array}{c} AX_P \cup AX_{Lem_{verified}} \cup \mathcal{E}_P \\ \vDash \\ \forall \dots \left[\bigwedge_{h \in H} h \equiv \mathtt{true} \wedge \bigwedge_{\forall \dots ih \in \mathit{IH}} \forall \dots (ih \equiv \mathtt{true}) \rightarrow b \equiv b' \right]. \end{array} \blacksquare$$

Bedeutet:

- In allen Modellen von $AX_P \cup AX_{Lem_{verified}} \cup \mathcal{E}_P$ werden b und b' bzgl. H und IH identisch gedeutet
- Damit: Symbolische Auswertung führt Gleichheitsumformungen durch.
- Sonderfall $b \vdash_{AX_P, Lem_{verified}, seq} true$: Dann gilt

$$\begin{array}{c} AX_P \cup AX_{Lem_{verified}} \cup \mathcal{E}_P \\ \vDash \\ \forall \dots \left[\bigwedge_{h \in H} h \equiv \mathtt{true} \wedge \bigwedge_{\forall \dots ih \in IH} \forall \dots (ih \equiv \mathtt{true}) \rightarrow b \equiv \mathit{true} \right] \end{array}$$

d.h. b ist in jedem Modell von $AX_P \cup AX_{Lem_{verified}} \cup \mathcal{E}_P$ bzgl. H und IH wahr!

Aber: Symbolische Auswertung ist *unvollständig*, d.h. es gibt Programme P und boolsche Terme b mit $AX_P \cup AX_{Lem_{verified}} \cup \mathcal{E}_P \models \forall \dots [\dots \rightarrow b \equiv true]$ aber $b \not\vdash_{AX_P, Lem_{verified}, seq} true$.

Beispiel 8 (Unvollständigkeit der Symbolischen Auswertung)

- Definiere Prozedur "<" (entsprechend Prozedur ">")
- lemma < is transitive <= \forall x, y, z : nat if $\{x < y, if \{y < z, x < z, true\}$, true $\}$ wird mittels *Verify* automatisch bewiesen (Induktionsbeweis)
- lemma $x < succ(x) <= \forall x : nat x < succ(x)$ wird mittels *Verify* automatisch bewiesen (Induktionsbeweis)
- lemma $x < succ(succ(x)) <= \forall x : nat x < succ(succ(x))$ wird mittels *Verify* automatisch bewiesen
 - Aber: Auch hier Induktionsbeweis obwohl nicht erforderlich lemma x < succ(succ(x)) kann allein mittels lemma < is transitive und zweimaliger Anwendung von lemma x < succ(x) ohne Induktion bewiesen werden:
 - (1) x < succ(x) lemma x < succ(x)
 - (2) succ(x) < succ(succ(x)) Instanz von lemma x < succ(x)
 - (3) x < succ(succ(x)) mit (1), (2) & lemma < is transitive

Warum Unvollständigkeit?

- $\Phi \models \varphi$ ist rekursiv aufzählbar (= semi-entscheidbar), d.h. man kann einen automatischen Beweiser ATP bauen, der (immer) " $\Phi \models \varphi$ " feststellt, falls dies tatsächlich gilt (=> "ATP ist vollständig")
- $\Phi \nvDash \varphi$ ist *nicht rekursiv aufzählbar*, d.h. man kann *keinen* automatischen Beweiser ATP bauen, der (immer) " $\Phi \nvDash \varphi$ " *feststellt*, falls $\Phi \vDash \varphi$ *nicht gilt*
- Vorraussetzung: "ATP ist korrekt", d.h. es gilt $\Phi \vDash \varphi$, falls ATP " $\Phi \vDash \varphi$ " feststellt
- **Konsequenz**: Für $\Phi \nvDash \varphi$ kann ein Beweisversuch von $\Phi \vDash \varphi$ mittels ATP zu einem *unendlichen Lauf* von ATP führen.
- Anders gesagt: Eine allgemeingültige Aussage kann immer maschinell bewiesen werden, es kann i.A. jedoch nicht maschinell festgestellt werden, ob eine Aussage nicht allgemeingültig ist.

• Damit:

Implementiert man eine *vollständige* Symbolische Auswertung, so *terminiert* diese i.A. *nicht* für b falls $AX_P \cup AX_{Lem_{verified}} \cup \mathcal{E}_P \nvDash \forall \dots [\dots \rightarrow b \equiv true]$!

• Konsequenz:

Wegen der *Unvollständigkeit* der *symbolischen Auswertung* sind die *HPL*-Regeln

6.	Case Analysis	11. Induction
7.	Use Lemma	12. Insert Induction Hypotheses
8.	Unfold Procedure	13. Insert Hypotheses
9.	Apply Equation	14. Move Hypotheses
10.	Purge	15. Delete Hypotheses

(=> **Kapitel 3**) erforderlich, um einen Beweis gegebenenfalls durch Benutzerinteraktion weiterzuführen.

Warum muß man sich überhaupt um ⊭ kümmern ?

- (1) I.a. sind Programme fehlerhaft und Behauptungen über Programme falsch:
 - Ein System muß auch für fehlerhafte Programme und falsche Behauptungen sinnvolle Ergebnisse liefern, die es einem Benutzer ermöglichen Fehler zu erkennen, um diese dann zu korrigieren
- (2) In Kapitel 12 definieren wir, wann ein Lemma *wahr* ist. Hier nur kurze vereinfachte Vorschau (Details => **Kapitel 12**):
 - Der Wahrheitsbegriff für Lemmata basiert auf sogenannten *Standardmo-dellen* \mathcal{M}_P (= *erzeugte* Algebren) von AX_P (es gilt also $\mathcal{M}_P \vDash AX_P$)
 - Ein Lemma lem ist wahr gdw. lem im Standardmodell \mathcal{M}_P gilt (d.h. $\mathcal{M}_P \vDash lem$ bzw. $lem \in Th(\mathcal{M}_P)$)
 - **Also:** Wir sprechen über die Gültigkeit von Aussagen in einem bestimmten Modell von AX_P und nicht in allen Modellen (= Allgemeingültigkeit) von AX_P
 - Offensichtlich: $AX_P \vDash lem \curvearrowright \mathcal{M}_P \vDash lem$
 - * Damit: Herleitungen der Symbolischen Auswertung sind auch im Standardmodell korrekt
 - **Aber:** $\mathcal{M}_P \models lem \wedge AX_P \models lem !$ D.h. Es gibt Programme P und wahre Behauptungen lem über P, so daß lem nicht aus AX_P folgt.

Beispiel 9 (Assoziativität von plus ist nicht allgemeingültig)

• *Programm*:

```
P = \langle \text{ structure bool} <= \dots, \text{ structure nat} <= \dots, function plus(x, y : nat) : nat <= \dots \rangle
```

• Axiome (vgl. **Kapitel 9**):

```
AX_P = \{ \ \forall x, y : \texttt{bool if}_{bool} \{ \texttt{true}, x, y \} \equiv x \}
                     \forall x, y : \texttt{bool if}_{bool} \{ \texttt{false}, x, y \}, y
                     eq_{nat}(0,0) \equiv true
                     \forall x:nat pred(succ(x)) \equiv x
                     \forall x, y : \mathtt{nat} \ \mathtt{eq}_{nat} ( \mathtt{succ} (x) , \mathtt{succ} (y) ) \equiv \mathtt{eq}_{nat} (x, y)
                     \forall x : \mathtt{nat} \ \mathtt{eq}_{nat} (0, \mathtt{succ}(x)) \equiv \mathtt{false}
                     \forall x : \mathtt{nat} \ \mathtt{eq}_{nat}(\mathtt{succ}(x), \mathtt{0}) \equiv \mathtt{false}
                     \forall x, y : \mathtt{nat} \ \mathtt{if}_{nat} \{ \mathtt{true}, x, y \} \equiv x
                     \forall x, y : \mathtt{nat} \ \mathtt{if}_{nat} \{ \mathtt{false}, x, y \} \equiv y
                     \forall x:nat ?0(x) \equiv eq<sub>nat</sub>(x,0)
                     \forall x:nat ?succ(x) \equiv eq_{nat}(x, succ(pred(<math>x)))
                       \forall x, y : \mathtt{nat} \ \mathtt{plus}(x, y) \equiv \mathtt{if}_{\mathtt{nat}} \{ \mathtt{eq}_{\mathtt{nat}}(x, 0), 0, 
                                                                               succ(plus(pred(x), y))}
```

• Signatur:

```
\Sigma_P = \{ 	ext{ true, false} : 	o 	ext{bool} \ if_{bool} : 	ext{bool} 	imes 	ext{bool} 	o 	ext{bool} 	o 	ext{bool} \ 0 : 	o 	ext{nat} \ succ, 	ext{pred} : 	ext{nat} 	o 	ext{nat} \ eq_{	ext{nat}} : 	ext{nat} 	imes 	ext{bool} \ if_{nat} : 	ext{bool} 	imes 	ext{nat} 	o 	ext{nat} 	o 	ext{nat} \ 0,? 	ext{succ} : 	ext{nat} 	o 	ext{bool} \ plus : 	ext{nat} 	o 	ext{nat} 	o 	ext{nat} \ \}
```

• Σ_P -Algebra $A = (\mathcal{A}, \alpha)$ mit

```
- \mathcal{A}_{\text{bool}} = \{\top, \bot\}

- \mathcal{A}_{\text{nat}} = \mathbb{N} \cup \{z + \frac{1}{2} | z \in \mathbb{Z}\}, also \mathcal{A}_{\text{nat}} = \{\ldots, -3.5, -2.5, -1.5, -0.5, 0, +0.5, +1, +1.5, +2, +2.5, \ldots\}

- \alpha_{\text{true}} := \top sowie \alpha_{\text{false}} := \bot

- \alpha_{\text{if}_s}(\top, a, b) := a für s \in \{\text{bool}, \text{nat}\} und alle a, b \in \mathcal{A}_s

- \alpha_{\text{if}_s}(\bot, a, b) := b für s \in \{\text{bool}, \text{nat}\} und alle a, b \in \mathcal{A}_s

- \alpha_0 := 0 sowie \alpha_{\text{succ}}(a) := a + 1 für alle a \in \mathcal{A}_{\text{nat}}

- \alpha_{\text{pred}}(0) := 0 sowie \alpha_{\text{pred}}(a) := a - 1 für alle a \in \mathcal{A}_{\text{nat}} \setminus \{0\}
```

- $\alpha_{eq_{nat}}(a, a) := \top$ sowie $\alpha_{eq_{nat}}(a, b) := \bot$ für alle $a, b \in \mathcal{A}_{nat}$ mit $a \neq b$
- $\alpha_{?0}(0) := \top$ sowie $\alpha_{?0}(a) := \bot$ für alle $a \in \mathcal{A}_{nat} \setminus \{0\}$
- $\alpha_{2succ}(0) := \bot$ sowie $\alpha_{2succ}(a) := \top$ für alle $a \in \mathcal{A}_{nat} \setminus \{0\}$
- $\alpha_{plus}(a,b) := (a-b) + \frac{1}{2}$ für alle $a,b \in \mathcal{A}_{nat} \setminus \mathbb{N}$
- $-\alpha_{\mathtt{plus}}(a,b) := a+b \text{ für alle } a,b \in \mathcal{A}_{\mathtt{nat}} \text{ mit } a \in \mathbb{N} \text{ oder } b \in \mathbb{N}$
- Es gilt $A \models AX_P (=> Übung)$
- Aber (!): Für $\varphi:=\forall x,y,z$: nat $\operatorname{eq}_{nat}\left(\operatorname{plus}\left(x,\operatorname{plus}\left(y,z\right)\right),\operatorname{plus}\left(\operatorname{plus}\left(x,y\right),z\right)\equiv\operatorname{true}\left(\operatorname{plus}\left(x,y\right),z\right)$ gilt $A\not\models\varphi$ denn

$$A [x/9.5, y/4.5, z/3.5] (\mathtt{plus}(x, \mathtt{plus}(y, z)))$$

$$= \alpha_{\mathtt{plus}}(9.5, \alpha_{\mathtt{plus}}(4.5, 3.5))$$

$$= \alpha_{\mathtt{plus}}(9.5, 1.5)$$

$$= 8.5$$

$$\neq 2.5$$

$$= \alpha_{\mathtt{plus}}(5.5, 3.5)$$

$$= \alpha_{\mathtt{plus}}(\alpha_{\mathtt{plus}}(9.5, 4, 5), 3.5)$$

$$= A [x/9.5, y/4.5, z/3, 5] (\mathtt{plus}(\mathtt{plus}(x, y), z))$$

• und damit gilt $AX_P \not\vDash \varphi$!

Damit: Eine *vollständige* symbolische Auswertung muß angesetzt auf *lem nicht* notwendigerweise *terminieren* (*obwohl lem wahr ist*)

Konsequenz:

Die Terminierung der Symbolischen Auswertung muß erzwungen werden!

- Naiver Ansatz: Die Symbolische Auswertung eines boolschen Terms b wird nach n Schritten mit Ergebnis b' gestoppt.
- Aber: Ergebnis b' im allgemeinen für weitere Arbeit unbrauchbar!
- Nützlicher Ansatz: Heuristik, die ausgehend von Programm P und Beweisziel b entscheidet, wann Auswertungsversuch mit brauchbarem (!) Ergebnis b' abgebrochen werden soll.
- **Aber**: Die *Heuristik* **muß** in gewissen Fällen **irren**, denn andernfalls wäre $\Phi \nvDash \varphi$ ja doch *rekursiv aufzählbar*.

Fazit: Um *nicht-terminierende* symbolische Auswertung zu *verhindern*, **muß** symbolische Auswertung *unvollständig* sein (s. Beispiel 8)!