Formale Grundlagen der Informatik 3

Prof. Dr. Christoph Walther / Visar Januzaj, Nathan Wasser Technische Universität Darmstadt — Wintersemester 2011/12

Lösungsvorschlag zu Übung 4

Version 1 vom 20.12.2011

Hinweis: Im Folgenden bezeichnet > die übliche (transitive) Ordnung auf den natürlichen Zahlen.

Aufgabe 4.1 (Fundierte Mengen)

Beweisen oder widerlegen Sie die Fundiertheit der folgenden Mengen:

1. $(\mathbb{Z}, >_{\mathsf{abs}})$ mit $n >_{\mathsf{abs}} m$ genau dann, wenn |n| > |m|

Lösungsvorschlag

Die Menge ist fundiert. Zum Beweis nehmen wir an, sie sei nicht fundiert, d. h. es gibt eine unendliche Folge $\langle m_i \rangle_{i \in \mathbb{N}}$ mit $m_i >_{\mathsf{abs}} m_{i+1}$. Also ist $|m_i| > |m_{i+1}|$ und somit ist $\langle |m_i| \rangle_{i \in \mathbb{N}}$ eine unendlich absteigende Folge in \mathbb{N} . Da aber $(\mathbb{N}, >)$ fundiert ist, kann es keine solche Folge geben. Die Annahme, $(\mathbb{Z}, >_{\mathsf{abs}})$ sei nicht fundiert, muss also falsch gewesen sein.

2. $(C_{\mathtt{list}[\mathbb{N}]}, \triangleright)$ mit $k \triangleright l$ genau dann, wenn $k \neq \emptyset \land (l = \emptyset \lor \mathtt{hd}(k) > \mathtt{hd}(l) \lor \mathtt{tl}(k) \rhd \mathtt{tl}(l))$

Lösungsvorschlag

Die Menge ist nicht fundiert: Mit $m_1 := 2 :: 1 :: \emptyset$ und $m_2 := 1 :: 2 :: \emptyset$ erhält man die unendlich absteigende Kette $m_1, m_2, m_1, m_2, \dots$

3. $(\mathbb{N} \times \mathbb{N}, \succ)$ mit $(n_1, m_1) \succ (n_2, m_2)$ genau dann, wenn $n_1 > n_2$ oder $n_1 = n_2$ und $m_1 > m_2$.

Lösungsvorschlag

Die Menge ist fundiert. Zum Beweis nehmen wir an, sie sei nicht fundiert, d. h. es gibt eine unendlich absteigende Folge $\langle (n_i, m_i) \rangle_{i \in \mathbb{N}}$ mit (*) $(n_i, m_i) \succ (n_{i+1}, m_{i+1})$. Wir unterscheiden zwei Fälle:

- a) Es gibt ein $j \in \mathbb{N}$, so dass $n_j = n_k$ für alle k > j. Damit gilt für alle k > j wegen (*), dass $m_k > m_{k+1}$ im Widerspruch zur Fundiertheit von $(\mathbb{N}, >)$
- b) Andernfalls gibt es für alle $j \in \mathbb{N}$ ein $k_j > j$ mit $n_j \neq n_{k_j}$. Wegen (*) gilt dann $n_j > n_{k_j} > n_{k_{k_j}} > \dots$ für alle $j \in \mathbb{N}$ im Widerspruch zur Fundiertheit von $(\mathbb{N}, >)$.

Da beide Fälle zu einem Widerspruch führen, muss die Annahme, dass \succ nicht fundiert ist, falsch gewesen sein. Also ist die Relation fundiert.

Aufgabe 4.2 (Relationen)

Betrachten Sie die folgende Relationenbeschreibung:

```
\begin{split} R := & \{ \langle \{?0(x)\}, \emptyset \rangle, \\ & \langle \{\neg?0(x), ?0(y)\}, \emptyset \rangle, \\ & \langle \{\neg?0(x), \neg?0(y)\}, \{\{x/x, y/y - x\}, \{x/x - y, y/y\}\} \rangle \} \end{split}
```

Dabei ist die Prozedur "-" wie folgt definiert:

```
function [infix1] -(a, b : \mathbb{N}) : \mathbb{N} <= if ?0(a) then 0 else if ?0(b) then a else -(a) - -(b) end_if
```

(a) Bestimmen Sie die Menge $pre_{>_{R.xy}}((42,23))$.

Lösungsvorschlag

Die einzige atomare rekursive Relationenbeschreibung in R ist

```
 \langle \{\neg?0(x), \neg?0(y)\}, \{\{x/x, y/y - x\}, \{x/x - y, y/y\}\} \rangle.  Mit \theta = \{x/42, y/23\} ist offenbar eval_P(\neg?0(42)) = \text{true} und eval_P(\neg?0(23)) = \text{true}. Für \delta_1 = \{x/x, y/y - x\} erhält man (42, 23) >_{R,xy} (eval_P(42), eval_P(23 - 42)) = (42, 0). Für \delta_2 = \{x/x - y, y/y\} ergibt sich (42, 23) >_{R,xy} (eval_P(42 - 23), eval_P(23) = (19, 23). Somit ist pre_{>_{R,xy}}((42, 23)) = \{(42, 0), (19, 23)\}.
```

(b) Geben Sie alle mit (5,3) startenden $>_{R,xy}$ -Ketten an.

Lösungsvorschlag

$$(5,3) >_{R,xy} (5,0)$$

$$(5,3) >_{R,xy} (2,3) >_{R,xy} (2,1) >_{R,xy} (2,0)$$

$$(5,3) >_{R,xy} (2,3) >_{R,xy} (2,1) >_{R,xy} (1,1) >_{R,xy} (1,0)$$

$$(5,3) >_{R,xy} (2,3) >_{R,xy} (2,1) >_{R,xy} (1,1) >_{R,xy} (0,1)$$

$$(5,3) >_{R,xy} (2,3) >_{R,xy} (0,3)$$

Aufgabe 4.3 (Minimale Elemente und Vorgänger)

Bestimmen Sie für jede der folgenden fundierten Mengen (M, \succ) die minimalen Elemente $min_{\succ}(M)$. Geben Sie außerdem für jedes nicht-minimale Element $m \in M \setminus min_{\succ}(M)$ die Anzahl der Vorgänger $|pre_{\succ}(m)|$ an.

1. $(\mathbb{N}, >)$

Lösungsvorschlag

$$min_{>}(\mathbb{N}) = \{0\}$$

Für alle $m \in \mathbb{N}$ mit $m \notin min_{>}(\mathbb{N})$ gilt $|pre_{>}(m \in \mathbb{N})| = m$

2. $(\mathcal{C}_{\mathtt{list}[\mathbb{N}]}, >)$ mit k > l genau dann, wenn k = n :: l für ein $n \in \mathbb{N}$.

Lösungsvorschlag

$$\begin{split} & \min_{>}(\mathcal{C}_{\texttt{list}[\mathbb{N}]}) = \{\emptyset\} \\ & \text{Für alle } k \in \mathcal{C}_{\texttt{list}[\mathbb{N}]} \text{ mit } k \notin \min_{>}(\mathcal{C}_{\texttt{list}[\mathbb{N}]}) \text{ gilt } |pre_{>}(k)| = 1 \end{split}$$

3. $(C_{\text{list}[\mathbb{N}]}, >_{\text{len}})$ mit $k >_{\text{len}} l$ genau dann, wenn |k| > |l|. Dabei ist |k| die Länge der Liste k.

Lösungsvorschlag

```
\begin{split} \min_{\geq_{\mathsf{len}}}(\mathcal{C}_{\mathtt{list}[\mathbb{N}]}) &= \{\emptyset\} \\ \text{Für alle } k \in \mathcal{C}_{\mathtt{list}[\mathbb{N}]} \text{ mit } |k| > 1 \text{ gilt } |pre_{\geq_{\mathsf{len}}}(k)| = \infty, \text{ für alle } k \in \mathcal{C}_{\mathtt{list}[\mathbb{N}]} \text{ mit } |k| = 1 \text{ ist } |pre_{\geq_{\mathsf{len}}}(k)| = 1 \end{split}
```

Aufgabe 4.4 (Strukturelle Ordnung)

Geben Sie für die folgenden Datentypen struc jeweils die Relationenbeschreibung R_{struc} an.

```
1. structure pair[@A, @B] <=
    pair(fst : @A, snd : @B)</pre>
```

 $R_{\mathtt{pair}[@A,@B]} = \{\langle \{?\mathtt{pair}(\mathtt{u})\},\emptyset\rangle\}$

Lösungsvorschlag

```
2. structure tree[@V] <=
    tip,
    node(value : @V, left : tree[@V], right : tree[@V])</pre>
```

Lösungsvorschlag

```
R_{\texttt{tree}[@V]} = \{ \langle \{?\texttt{tip}(u)\}, \emptyset \rangle, \langle \{?\texttt{node}(u)\}, \{\{u/\texttt{left}(u)\}, \{u/\texttt{right}(u)\}\} \rangle \}
```

```
3. structure EXPR <=
    VAR#(index : nat),
    EXPRO(e-op0 : nat),
    EXPR2(e-op2 : nat, arg1 : EXPR, arg2 : EXPR)</pre>
```

Lösungsvorschlag

```
R_{\mathtt{EXPR}} = \{ \langle \{?\mathtt{VAR\#}(\mathtt{u})\}, \emptyset \rangle, \langle \{?\mathtt{EXPRO}(\mathtt{u})\}, \emptyset \rangle, \langle \{?\mathtt{EXPR2}(\mathtt{u})\}, \{\{\mathtt{u}/\mathtt{arg1}(\mathtt{u})\}, \{\mathtt{u}/\mathtt{arg2}(\mathtt{u})\}\} \rangle \}
```

Aufgabe 4.5 (Rekursion und Induktion)

Betrachten Sie die folgenden Prozeduren p:

```
1. function f(n : \mathbb{N}) : \mathbb{N} \leq
  if ?0(n)
     then 1
     else if ?0(pred(n))
             then 1
             else f(pred(n)) + f(pred(pred(n)))
           end_if
  end_if
2. function g(n, m : \mathbb{N}) : \mathbb{N} \leq
  if ?0(n)
     then 0
     else if ?0(m)
             then n
             else g(pred(n), pred(m))
           end_if
  end_if
3. function h(k : list[nat]) : \mathbb{N} \leq
  if ?\phi(k)
     then *
     else if ?ø(tl(k))
             then hd(k)
             else if hd(k) > hd(tl(k))
                       then h(tl(k))
                       else h(hd(k) :: tl(tl(k)))
                   end_if
           end_if
  end_if
```

- Geben Sie zu jeder Prozedur p die zusammengesetzten Relationenbeschreibungen R_p , sowie die Induktionsaxiome $IndAx_{p(...)>0,R_p}$ an.
- Begründen Sie jeweils die Fundiertheit der Relationenbeschreibungen R_p . Ein formaler Beweis ist nicht notwendig.

Lösungsvorschlag

1. •

```
\begin{split} R_{\mathbf{f}} &= \{ \langle \{ ?0(\mathbf{n}) \}, \emptyset \rangle, \\ & \quad \langle \{ \neg ?0(\mathbf{n}), ?0(\mathsf{pred}(\mathbf{n})) \}, \emptyset \rangle, \\ & \quad \langle \{ \neg ?0(\mathbf{n}), \neg ?0(\mathsf{pred}(\mathbf{n})) \}, \{ \{ \mathsf{n}/\mathsf{pred}(\mathsf{pred}(\mathbf{n})) \}, \{ \mathsf{n}/\mathsf{pred}(\mathbf{n}) \} \} \rangle \} \end{split} IndAx_{\mathbf{f}(\mathbf{n})>0,R} &= \forall \mathbf{n} : \mathbb{N} \ ?0(\mathbf{n}) \Rightarrow f(n) > 0 \\ & \quad \wedge \forall \mathbf{n} : \mathbb{N} \ \neg ?0(\mathbf{n}) \wedge ?0(\mathsf{pred}(\mathbf{n})) \Rightarrow f(n) > 0 \\ & \quad \wedge \forall \mathbf{n} : \mathbb{N} \ \neg ?0(\mathbf{n}) \wedge \neg ?0(\mathsf{pred}(\mathbf{n})) \wedge \mathbf{f}(\mathsf{pred}(\mathsf{pred}(\mathbf{n}))) > 0 \\ & \quad \Rightarrow \forall \mathbf{n} : \mathbb{N} \ \mathbf{f}(\mathbf{n}) > 0 \end{split}
```

• Deuten wir die Terme als natürliche Zahlen, so wird deutlich, dass zu keiner Zahl m eine unendliche Kette $(m >_{R_f} m_1 >_{R_f} m_2 >_{R_f} \dots)$ existieren kann, da spätestens für m_m kein Nachfolger mehr existieren kann, weil einer der Basisfälle 0 oder 1 erreicht ist.

2.

$$\begin{split} R_{\mathbf{g}} &= \{ \langle \{ ?0(\mathbf{n}) \}, \emptyset \rangle, \\ & \quad \langle \{ \neg ?0(\mathbf{n}), ?0(\mathbf{m}) \}, \emptyset \rangle, \\ & \quad \langle \{ \neg ?0(\mathbf{n}), \neg ?0(\mathbf{m}) \}, \{ \{ \mathbf{n}/\mathtt{pred}(\mathbf{n}), \mathbf{m}/\mathtt{pred}(\mathbf{m}) \} \} \rangle \} \end{split}$$

$$\begin{split} \mathit{IndAx}_{g(n,m)>0,R} &= \forall n, m : \mathbb{N} ? O(n) \Rightarrow g(n,m) > 0 \\ & \wedge \forall n, m : \mathbb{N} \neg ? O(n) \wedge ? O(m) \Rightarrow g(n,m) > 0 \\ & \wedge \forall n, m : \mathbb{N} \neg ? O(n) \wedge \neg ? O(m) \wedge g(\mathsf{pred}(n), \mathsf{pred}(m)) > 0 \Rightarrow g(n,m) > 0 \\ & \Rightarrow \forall n, m : \mathbb{N} \ g(n,m) > 0 \end{split}$$

- Da in jedem Schritt sowohl m als auch n kleiner werden, ist nach spätestens $\min(m, n)$ Schritten ein Basisfall erreicht, in dem n = 0 oder m = 0 gilt.
- **3**. •

$$\begin{split} R_{h} &= \{ \langle \{? \varnothing(\mathtt{k})\}, \emptyset \rangle, \\ & \quad \langle \{\neg? \varnothing(\mathtt{k}), ? \varnothing(\mathtt{tl}(\mathtt{k}))\}, \emptyset \rangle, \\ & \quad \langle \{\neg? \varnothing(\mathtt{k}), \neg? \varnothing(\mathtt{tl}(\mathtt{k})), \mathtt{hd}(\mathtt{k}) > \mathtt{hd}(\mathtt{tl}(\mathtt{k}))\}, \{ \{\mathtt{k}/\mathtt{tl}(\mathtt{k})\} \} \rangle, \\ & \quad \langle \{\neg? \varnothing(\mathtt{k}), \neg? \varnothing(\mathtt{tl}(\mathtt{k})), \neg \mathtt{hd}(\mathtt{k}) > \mathtt{hd}(\mathtt{tl}(\mathtt{k}))\}, \{ \{\mathtt{k}/\mathtt{hd}(\mathtt{k}) : : \mathtt{tl}(\mathtt{tl}(\mathtt{k}))\} \} \rangle \} \end{split}$$

$$\begin{split} Ind Ax_{\mathbf{h}(\mathbf{n})>0,R} &= \forall \mathtt{k} : \mathtt{list}[\mathtt{nat}] \ ?\phi(\mathtt{k}) \Rightarrow \mathbf{h}(\mathtt{k}) > 0 \\ & \wedge \forall \mathtt{k} : \mathtt{list}[\mathtt{nat}] \ \neg ?\phi(\mathtt{k}) \wedge ?\phi(\mathtt{tl}(\mathtt{k})) \Rightarrow \mathbf{h}(\mathtt{k}) > 0 \\ & \wedge \forall \mathtt{k} : \mathtt{list}[\mathtt{nat}] \ \neg ?\phi(\mathtt{k}) \wedge \neg ?\phi(\mathtt{tl}(\mathtt{k})) \wedge \mathbf{hd}(\mathtt{k}) > \mathbf{hd}(\mathtt{tl}(\mathtt{k})) \\ & \wedge \mathbf{h}(\mathtt{tl}(\mathtt{k})) > 0 \Rightarrow \mathbf{h}(\mathtt{k}) > 0 \\ & \wedge \forall \mathtt{k} : \mathtt{list}[\mathtt{nat}] \ \neg ?\phi(\mathtt{k}) \wedge \neg ?\phi(\mathtt{tl}(\mathtt{k})) \wedge \neg \mathbf{hd}(\mathtt{k}) > \mathbf{hd}(\mathtt{tl}(\mathtt{k})) \\ & \wedge \mathbf{h}(\mathtt{hd}(\mathtt{k}) : : \mathtt{tl}(\mathtt{tl}(\mathtt{k}))) > 0 \Rightarrow \mathbf{h}(\mathtt{k}) > 0 \\ & \Rightarrow \forall \mathtt{k} : \mathtt{list}[\mathtt{nat}] \ \mathbf{h}(\mathtt{k}) > 0 \end{split}$$

• In jedem Schritt wird die Länge der Liste kleiner, nach endlich vielen Schritten ist also ein Basisfall in Form einer Liste mit Länge 0 oder 1 erreicht.